
roboglia
Release 0.1.0

Alex Sonea

Jun 11, 2020

CONTENTS:

1 Installation 1
1.1 Requirements . 1
1.2 Installation procedure . 1
1.3 References . 3

2 roboglia Quick Start 5
2.1 Robot Definition File . 5
2.2 Moving the Robot . 11

3 API Reference 15
3.1 base Module . 15
3.2 dynamixel Module . 62
3.3 i2c Module . 77
3.4 move Module . 89
3.5 utils Module . 96

4 Indices and tables 101

Python Module Index 103

Index 105

i

ii

CHAPTER

ONE

INSTALLATION

1.1 Requirements

roboglia requires Python 3. The CI builds test the package with:

• Python 3.6 and 3.7

• OS: Linux; distributions Xenial (16.04) and Bionic (18.04)

• Architecture: AMD64 and ARM64

This doesn’t mean the package might not work on other OS / Architecture / Python version combinations, but they are
not officially supported.

Due to the heavily hardware dependent nature of roboglia some of the functionality requires lower level modules to
communicate with the physical devices. For example to use Dynamixel devices you need dynamixel_sdk module,
for I2C devices smbus2, for SPI devices spidev, etc. These packages are not available for all platforms and Python
version, so care must be taken when deciding what platform to use for the robot.

While the package includes these functionalities, we are aware that not all robots will need to use all these types of
devices. For instance, a robot might use only PWM controlled devices accessed through an I2C multiplexer like this
16 Channel PWM Bonnet1 from Adafruit. There is therefore no need to install dynamixel_sdk or spidev.

With this observation in mind we have decided not to explicitly include hard dependencies on these low level packages.
This means that when you install roboglia it will not automatically install them for you. It will also not check if
they are available, instead it will be your responsibility to install the dependencies as you need them, as explained in
the next paragraphs. This is an important point to remember, so here it is emphasized in a warning:

Warning: roboglia does not automatically install dependent packages for hardware access. You will have to
install them manually as your robot requires.

1.2 Installation procedure

You can install roboglia without installing the hardware dependencies, but when you will use it you must have those
dependencies available otherwise Python will raise an No module exception.

You can install roboglia using pip:

pip install roboglia

1 https://www.adafruit.com/product/3416

1

https://www.adafruit.com/product/3416
https://www.adafruit.com/product/3416

roboglia, Release 0.1.0

This will work well, and is especially recommended, for conda2 environments. This will install only the main package
without hardware package dependencies, but with other dependencies (like PyYAML).

If you want to install a particular version of the package you can specify:

pip install roboglia==X.X.X

If you want to install the latest code from Github, you can clone it and install it from there:

cd /tmp
git clone https://github.com/sonelu/roboglia.git
cd roboglia
[sudo] python setup.py install

The last command might require you to enter the password to allow sudo elevation.

1.2.1 Installing hardware dependencies

The installer comes with a number of configurations for extra packages that can be installed as needed.

dynamixel_sdk3 is released and maintained by ROBOTIS, the maker of the Dynamixel ecosystem. For more de-
tails about the package and up to date information and installation instructions visit the DynamixelSDK Manual4 on
ROBOTIS website.

To install dynamixel_sdk when you install roboglia you specify:

pip install roboglia[dynamixel]

Warning: dynamixel_sdk is itself dependent on pyserial and will attempt to install it. Not all platforms
have support for pyserial.

If you plan to use I2C devices in your robot, then you need to install smbus2:

pip install roboglia[i2c]

Warning: Not all platforms have support for smbus2.

For more details about the package and up to date information and installation instructions visit the smbus2 Github5

page.

If you plan to use SPI devices in your robot, then you need to install spidev:

pip install roboglia[spi]

For more details about the package and up to date information and installation instructions visit the spidev Github6

page.

2 https://www.anaconda.com
3 https://github.com/ROBOTIS-GIT/DynamixelSDK
4 https://github.com/ROBOTIS-GIT/DynamixelSDK.git
5 https://github.com/kplindegaard/smbus2
6 https://github.com/doceme/py-spidev

2 Chapter 1. Installation

https://www.anaconda.com
https://github.com/ROBOTIS-GIT/DynamixelSDK
https://github.com/ROBOTIS-GIT/DynamixelSDK.git
https://github.com/kplindegaard/smbus2
https://github.com/doceme/py-spidev
https://www.anaconda.com
https://github.com/ROBOTIS-GIT/DynamixelSDK
https://github.com/ROBOTIS-GIT/DynamixelSDK.git
https://github.com/kplindegaard/smbus2
https://github.com/doceme/py-spidev

roboglia, Release 0.1.0

Warning: Not all platforms have support for spidev.

If you intend to use a combination of hardware you can install them by entering the codes above separated by comas,
for instance if you need Dynamixel and I2C you would use:

pip install roboglia[dynamixel,i2c]

Warning: The pip syntax requires there are no blanks between the elements in the square brackets above.

To simplify things, if you need all communication packages, there is an option all that will install all the extra
dependencies:

pip install roboglia[all]

Note: This option will be kept in line with future developments and, if new hardware dependencies will be added,
will be updated to include them. So you can be assured that this installation option will install all extra dependencies
in addition to the core dependencies.

1.3 References

1.3. References 3

roboglia, Release 0.1.0

4 Chapter 1. Installation

CHAPTER

TWO

ROBOGLIA QUICK START

The main idea behind the roboglia package is to provide developers with reusable components that would require
as little coding as possible to put together the base of a robot.

Let’s suppose we just finished building a robot that we we would like to use with roboglia. Let’s say that the robot
is just a pan-tilt with an IMU (inertial measurement unit) on top.

Within our code we could create all the instances of the robot components by calling the class constructors with the
specifics of that component. But there is a more convenient way: use a robot definition file, a YAML document that
describes the structure and the components of the robot. With such a definition file available (and we will discuss it’s
content later) our code will simply call the from_yaml() class method of roboglia.base.BaseRobot:

1 from roboglia.base import BaseRobot
2 import roboglia.dynamixel
3 import roboglia.i2c
4

5 robot = BaseRobot.from_yaml('path/to/my/robot.yml')
6 robot.start()
7

8 ...
9 # use our robot

10 ...
11

12 robot.stop()

2.1 Robot Definition File

So, what is in the robot definition file? Let’s see how such a file would look like for our example robot:

1 my_awesome_robot:
2

3 buses:
4 dyn_bus:
5 class: SharedDynamixelBus
6 port: '/dev/ttyUSB0'
7 baudrate: 1000000
8 protocol: 2.0
9

10 i2c0:
11 class: I2CBus
12 port: 0
13

14 devices:
(continues on next page)

5

roboglia, Release 0.1.0

(continued from previous page)

15

16 d01:
17 class: DynamixelDevice
18 bus: dyn_bus
19 dev_id: 1
20 model: XL-320
21

22 d02:
23 class: DynamixelDevice
24 bus: dyn_bus
25 dev_id: 2
26 model: XL-320
27

28 imu_g:
29 class: I2CDevice
30 bus: i2c0
31 dev_id: 0x6a
32 model: LSM330G
33

34 imu_a:
35 class: I2CDevice
36 bus: i2c0
37 dev_id: 0x1e
38 model: LSM330A
39

40 joints:
41 pan:
42 class: JointPVL
43 device: d01
44 pos_read: present_position_deg
45 pos_write: goal_position_deg
46 vel_read: present_speed_dps
47 vel_write: moving_speed_dps
48 load_read: present_load_perc
49 load_write: torque_limit_perc
50 activate: torque_enable
51 minim: -90.0
52 maxim: 90.0
53

54 tilt:
55 class: JointPVL
56 device: d02
57 inverse: True
58 pos_read: present_position_deg
59 pos_write: goal_position_deg
60 vel_read: present_speed_dps
61 vel_write: moving_speed_dps
62 load_read: present_load_perc
63 load_write: torque_limit_perc
64 activate: torque_enable
65 minim: -45.0
66 maxim: 90.0
67

68 sensors:
69 accelerometer:
70 class: SensorXYZ
71 device: imu_a

(continues on next page)

6 Chapter 2. roboglia Quick Start

roboglia, Release 0.1.0

(continued from previous page)

72 x_read: out_y_deg
73 x_inverse: True
74 y_read: out_z_deg
75 z_read: out_x_deg
76 z_offset: 45.0
77

78 gyro:
79 class: SensorXYZ
80 device: imu_g
81 x_read: out_y_deg
82 x_inverse: True
83 y_read: out_z_deg
84 z_read: out_x_deg
85 z_offset: 45.0
86

87 groups:
88 dev_servos:
89 devices: [d01, d02]
90

91 dev_imu:
92 devices: [imu_g, imu_a]
93

94 all_joints:
95 joints: [pan, tilt]
96

97 syncs:
98 read_pslvt:
99 # read position, speed, load, voltage, temperature

100 class: DynamixelSyncReadLoop
101 group: dev_servos
102 registers: [present_position, present_speed, present_load,
103 present_voltage, present_temperature]
104 frequency: 50.0
105 throttle: 0.25
106

107 write_psl:
108 # write position, speed, load
109 class: DynamixelSyncWriteLoop
110 group: dev_servos
111 registers: [goal_position, moving_speed, torque_limit]
112 frequency: 50.0
113 throttle: 0.25
114

115 read_imu:
116 class: I2CReadLoop
117 group: dev_imu
118 registers: [out_x, out_y, out_z]
119 frequency: 25.0
120

121 manager:
122 frequency: 50.0
123 throttle: 0.25
124 group: all_joints
125 p_function: mean
126 v_function: max
127 ld_function: max

2.1. Robot Definition File 7

roboglia, Release 0.1.0

I know, it’s a pretty long listing, but it’s not that hard to understand it. We will now go component by component and
explain it’s content.

As you can see the YAML file is a large dictionary that includes one key-value pair: the name of the robot
“my_awesome_robot” and the components of this robot.

Note: At this moment roboglia only supports one robot definition from the YAML file and will only look at the
information for the first key-value pair. If multiple values are defined roboglia will issue a warning.

The values part of that dictionary is in itself a dictionary of robot components identified by a number of keywords that
reflect the parameters of the robot class constructor (we’ll come to this in a second). We will look at them in the next
sections.

2.1.1 Buses

The first is the busses section. This describes the communication channels that the robot uses to interact with the
devices. In our framework buses deal not only with the access to the physical medium (opening, closing, reading,
writing) but also deals with the particular communication protocol used by the device. For instance the packets used
by Dynamixel devices have a certain structure and follow a number of conventions (ex. command codes, checksums,
etc.).

At this moment there are several communication buses supported by roboglia, the important ones for our robot
are: Dynamixel and I2C. The first one is used to communicate with the servos while the last one will be used for the
communication with the IMU.

If you look in the listing above you see that the buses are described in a dictionary, with each bus identified by a
name and a series of attributes. All these attributes reflect the constructor parameters for the class that implements
that particular bus. For instance the class I2CBus inherits the parameters from BaseBus (name, robot, port and
auto) while adding a couple of it’s own (mock and err). The name of the bus will be retrieved from the key of the
dictionary, in our case they will be “dyn_upper”, “dyn_lower” and “i2c0”.

Warning: When naming the objects in the YAML file make sure that you use the same rules that you use for
naming variables in Python: use only alphanumeric characters and “_” and make sure they do not start with a digit.
In all cases the names have to be hashable and Python must be able to use them as dictionary keys. In some cases
they even end up as instance attributes (ex. the registers of a device), in which case they should be defined with the
the same care as when naming class attributes.

For details of attributes for each type of bus please see the robot YAML specification documentation.

2.1.2 Devices

The second important elements are the physical actuators and sensors that the robot employs. In roboglia they
are represented by devices, the class of objects that act as a surrogate of the real device and with which the rest
of the framework interacts. Traditionally these surrogate objects were created by writing classes that implemented
the specific behavior of that device, sometimes taking advantage of inheritance to efficiently implement common
functionality across a range of devices. While this is still the case in roboglia (on a significantly larger scale) the
very big difference is that we use device definition files (as YAML files) to describe the type of a device. A more
generic class in the framework will be responsible for creating an instance from the information provided in these
definition files without having to write additional code or to subclass any “device” class.

For our robot roboglia already has support for XL-320 devices and we plan to leverage this. The IMU inside the
robot is an LSM330 accelerometer / gyroscope that is also included in the framework. In general all devices have a

8 Chapter 2. roboglia Quick Start

roboglia, Release 0.1.0

name (the key in the dictionary), a class identifier, the bus they are attached to, a device id (dev_id is used in the
YAML as id is a reserved word in Python and we should avoid it as an attribute name) and a model that indicates
the type of device from that class. Depending on the device there might be additional mandatory or optional attributes
that you can identify from the robot YAML specification documentation and the specific class constructor.

The device model is in itself implemented through a YAML file (a device definition) that describes the registers
contained in the device and adds a series of useful value handling routines allowing for a more natural representation
of the register’s information. For more details look at the devices defined in the devices/ directory in each of
the class of objects (dynamixel, i2c, etc.) or look at the YAML device specification documentation. You can find
out more about techniques like clone registers (that access the same physical device register, but provide a different
representation of the content, like in the case of a positional register in an actuator that could have clones for the
position in degrees or in radians, or the case of a bitwise status register that can have several clones with masked
results representing the specific bit).

2.1.3 Joints

The actuator devices present in a robot can be of various types and with various capabilities. Joints aim to produce an
uniform view of them so that higher level operations (like move controllers and scripts) can be run without having to
keep in track of all devices’ technicalities.

There are 3 types of joints defined in roboglia: the simply named Joint only deals with the positional informa-
tion. For this it uses two attributes that identify the device’s registries responsible for reading and writing its position.
Please note that the units of measurement that are used by that register are automatically inherited, so if the register
represents the position in degrees then the joint will also have the same unit of measurement. There are not unit con-
versions for joints, specifically because those can and should be incorporated at the register level and to avoid multiple
layers of conversions. Optionally a Joint can have a specification for an activation register that controls the torque
on the device, if omitted the joint is assumed to be active at all times. Also, optional, a joint can have an inverse
parameter that indicates the coordinate system of the joint is inverse to the one of of the device, an offset that allows
you to indicate that the 0 position of the joint is different from the one of the device as well as a minimum and a
maximum range defined in the joints coordinate system (before applying inverse and offset) to limit the commands
that can be provided to the joint.

JointPV includes velocity control on top of the positional control by including the reference to the device’s registries
that read, respectively write the values for the joint velocity. JointPVL adds load control (or torque control if you
want) to the joint, creating a complete managed joint.

The advantage of using joints in your design is that later you can use higher level constructs (like Script and Move
to drive the devices and produce complex patterns.

2.1.4 Sensors

Sensors are similar to Joints in the sense that they abstract the information stored in the device;s registers and provide
a uniform interface for accessing this data.

At the moment there are 2 flavours of Sensors, the simply called Sensor that allows the presentation of a single value
from a device and a SensorXYZ that presents a triplet of data as X, Y, Z, suitable for instance for our accelerometer
/ gyroscope devices.

Like Joints, the Sensors can provide specifications for an activate register and can indicate an inverse and offset
parameters (for SensorXYZ there is one of those for each axis). Interestingly, you can can assign the device’s registers
in a different order than the one they are represented internally in order to compensate for the position of the device
in the robot. In our example you can see that the sensor’s X axis is provided by the device’s Y axis and that the
representation is inverse, reflecting the actual position of the sensor on the board in the robot.

2.1. Robot Definition File 9

roboglia, Release 0.1.0

2.1.5 Groups

Groups are ways of putting together several devices, or joints with the purpose of having a simpler qualifier for other
objects that interact with them, like Syncs and Joint Manager.

The components of the groups can be a list of devices, joints or other groups, which is very convenient when con-
structing a hierarchical structure of devices, for instance for a humanoid robot where you can define a “left_arm”
group and a “right_arm” and then group them together under an “arms” group that in turn can be combined with a
“legs” groups, etc. This allows for a very flexible structuring of the components so that the access to them can be split
according to need, while still retaining the overall grouping of all devices if necessary.

2.1.6 Syncs

The device classes that are instantiated by the BaseRobot according to the specifications in the robot definition file are
only surrogate representations of the actual devices. Each register defined in the device instance has an int_value
that reflects the internal representation of the register’s value. Typically any access to the value property of that
register will trigger a read (if the accessor is a get) of the register value form the device through the communication
bus, or a write if the (accessor is a set). This works fine for occasional access to registers (ex. the activation of a
joint because we normally do that very rarely) but is not suitable for information that needs to be exchanged often. In
those cases the buses provide (usually) more efficient communication methods that bundle multiple registers or even
multiple devices into one request.

This facility is encapsulated in the concept of a Sync. The Sync is a process that runs in it’s own Thread and performs
a bus bulk operation (either read or write) with a given frequency. The sync needs the group of devices and the list
of registers that needs to synchronize. A sync is quite complex and include self monitoring and adjustment of the
processing frequency so that the target requested is kept (due to the fact that we run Unix kernel there is no real-
time guarantee for the thread execution and actual processing frequencies can vary wildly depending on the system
performance) and support start, stop, pause and resume operations.

When syncs start they place a flag sync on the registers that are subject to sync replication and value properties
no longer perform read or write operations, instead simply relying on the data already available in the register’s
int_value member.

2.1.7 Joint Manager

While having the level of abstraction that is provided by Joint and it’s subclasses is nice, there is another problem
that usually robots have to deal with: several streams of commands for the joints. It is common, for complex robot
behavior, to have streams that might provide different instructions to the joints, according to their purpose. If they are
not mitigated the robot can get in an oscillatory state and can be destabilized. Sometimes, one of the streams provides
a “correction” message to the joints like in the case of a posture control loop that adjusts the joints to balance the robot
while still allowing the main script or move to run their course.

For this a robot has one, and only one, Joint Manager object a construct that is responsible for mitigating the com-
mands and transmitting an aggregated signal to the joints.

The Joint Manager is instantiated when the robot starts and runs (like the Syncs above) in a Python thread for which
you have the possibility to specify a frequency as well as all the other monitoring parameters. When moves or scripts
need to provide their requests, they do not interact directly with the joints, but submit these requests to the Joint
Manager. Periodically the Joint Manager processes these requests and compounds a unique request that is passed to
the joints under it’s control.

The Joint Manager allows you to specify the way the requests are aggregated for each of the joints’ parameters:
position, velocity, load. By default all use mean over the request values (for that joint and particular parameter) but
you can use other aggregation functions, like we used max in our example for velocity and load, meaning that if

10 Chapter 2. roboglia Quick Start

roboglia, Release 0.1.0

multiple orders for the same joint are received the position is averaged, but velocity and load attributes are determined
by using the maximum between the request.

2.2 Moving the Robot

Now that the robot is loaded and ready for action how do you control it? roboglia offers two low level interaction
methods that can be exploited into more complex behavior:

• scripted behavior: this is represented by predefined actions that are described in a “Script” and can be executed
on command

• programmatic behavior: this is more complex interaction that is determined programmatically, for instance as a
result of running a ML algorithm that dynamically produce the joint commands

2.2.1 Scripts

Scripts are sequences of joint commands that can be described in an YAML file. roboglia offers the support
for loading of a script from a file, preparing all the necessary constructs and executing it on command. The actual
execution of the script is performed in a dedicated thread and therefore inherits the other facilities provided by the
Thread like early stopping, pause and resume.

Here is an example of a script:

1 script_1:
2

3 joints: [j01, j02, j03]
4 defaults:
5 duration: 0.2
6

7 frames:
8

9 start:
10 positions: [0, 0, 0]
11 velocities: [10, 10, 10]
12 loads: [100, 100, 100]
13

14 frame_01: [100, 100, 100]
15 frame_02: [200, 200, 200]
16 frame_03: [400, 400, 400]
17 frame_04: [nan, nan, 300]
18 frame_05: [nan, nan, 100]
19

20 sequences:
21

22 move_1:
23 frames: [start, frame_01, frame_02, frame_03]
24 durations: [0.2, 0.1, 0.2, 0.1]
25 times: 1
26

27 move_2:
28 frames: [frame_04, frame_05]
29 durations: [0.2, 0.15]
30 times: 3
31

32 empty:
(continues on next page)

2.2. Moving the Robot 11

roboglia, Release 0.1.0

(continued from previous page)

33 times: 1
34

35 unequal:
36 frames: [frame_01, frame_02]
37 durations: [0.1, 0.2, 0.3]
38 times: 1
39

40 scenes:
41

42 greet:
43 sequences: [move_1, move_2, move_1.reverse]
44 times: 2
45

46 script: [greet]

A script is produced by layering a number of elements, pretty much like a film script. To start with, the Script defines
a number of contextual elements that simplify the writing of the subsequent components:

• joints: here the joints that the script plans to use a listed in order. The names of the joints have to respect
those defined in the robot definition file and you must ensure that the joints have been advertised by the Joint
Manager. Only joints defined in the Joint Manager can be controlled through a script. Defining the joints here
in an ordered list simplifies later the writing of the Frames.

• defaults: helps with defining values that will automatically be used in case no more specific values are provided
later in the other components. This helps with eliminating the need to write repetitive information in the script.

The most basic structure is the Frame: this represents a particular instruction for the joints. A frame has a name
(ex. “start” in the code above) and a dictionary of positions, velocities and load commands all provided as lists
representing the joints in the exact order defined at the beginning of the file. You can use nan (not a number) to
indicate that for a particular joint that value is not provided and should remain the one the joint already has. You can
also provide the lists shorter than the number of joints and the processing will assume all the missing one are nan and
pad the list accordingly to the right. Providing any of the control elements (position, velocity, load) is optional, so you
can skip any of them if you don’t need to control that item. To make things even simpler, as most of the times you only
want to provide positional instructions, you can do that by just supplying a list of positions instead of the dictionary
and the code will assume those are “position” instructions. You can see that used for “frame_01”, “frame_02”, etc.

You can group the frames in a Sequence. This is an ordered list of Frames that have associated transition durations
and additionally can be repeated a number of times to produce the desired effect. If durations are not provided for a
sequence, the ones defined in the default section are used.

Sequences are grouped in Scenes were you can specify an order for the execution Sequences and, additionally, you
can use the qualifier reverse to indicate that a particular Sequence should be executed in the reverse order of definition.
Like Sequences, Scenes can be executed a number of times by using the qualifier with the same name.

Finally a list of Scenes are combined in a Script that also can specify a repetition parameters times like the previous
components.

Once a Script is prepared in a YAML file, working with it is very simple. You load the definition with from_yaml()
and then simply call the start() method to initiate the moves. The Script will run through all the Frames as and
will gracefully complete when the sequence of instructions is completed. During this time you can pause the Script
and resume it or you can prematurely stop it if needed. Please be aware that the Script sends all the commands to
the Joint Manager and as a result you can combine multiple Script executions in the same time, even if they may have
overlapping joints.

Here is an example of running the Script defined above under a curses loop:

12 Chapter 2. roboglia Quick Start

roboglia, Release 0.1.0

1 import curses
2 from roboglia.move import Script
3

4 def main(win, robot):
5 win.nodelay(True)
6 key = ""
7 win.clear()
8 script = Script.from_yaml(robot=robot, file_name='my_script.yml'
9 while(True):

10 try:
11 key = win.get_key()
12 if str(key) == 's':
13 # start the Script; if already running it will restart!
14 script.start()
15 elif str(key) == 'x':
16 # stop the script
17 script.stop()
18 elif str(key) == 'p':
19 script.pause()
20 elif str(key) == 'r':
21 script.resume()
22 elif str(key) == 'q':
23 # stops the main loop
24 script.stop()
25 break
26 except Exception as e:
27 # no input
28 pass
29

30 # initialize robot
31 ...
32

33 curses.wrapper(main)

Of course this is just a quick example, you are free to incorporate the functionality as needed in you main processing
logic of your robot, but keep in mind how easy it is to control the execution of a script with these 4 methods.

2.2.2 Moves

Moves allows you to control the robot joints using arbitrary commands that are produced programmatically. You will
normally subclass the Motion class and implement the methods that you need in order to perform the actions.

For instance the following code would move the head of a robot using a sinusoid trajectory:

1 from roboglia.move import Motion
2 from math import sin, cos
3

4 class HeadMove(Motion):
5

6 def __init__(manager, # robot manager object needed for super()
7 head_yaw, # head yaw joint
8 head_pitch, # head pitch joint
9 yaw_ampli= 60, # yaw move amplitude (degrees)

10 pitch_ampli=30, # pitch move amplitude (degrees)
11 cycle = 5): # duration of a cycle
12 super().__init__(name='HeadSinus', frequency=25.0,

(continues on next page)

2.2. Moving the Robot 13

roboglia, Release 0.1.0

(continued from previous page)

13 manager=manager, joints=[head_yaw, head_pitch])
14 self.head_yaw = head_yaw
15 self.head_pitch = head_pitch
16 self.yaw_ampli = yaw_ampli
17 self.pitch_ampli = pitch_ampli
18 self.cycle = cycle
19

20 def atomic(self):
21 # calculates the sin and cos for the yaw and pitch
22 sin_pos = sin(self.ticks / self.cycle) * self.yaw_ampli
23 cos_pos = cos(self.ticks / self.cycle) * self.pitch_ampli
24 commands = {}
25 commands[self.head_yaw.name] = PVL(sin_pos)
26 commands[self.head_pitch.name] = PVL(cos_pos)
27 self.manager.submit(self, commands)

And in the main code of your robot you can use it as follows:

1 from roboglia.base import BaseRobot
2

3 robot = BaseRobot.from_yaml('/path/to/robot.yml')
4 robot.start()
5

6 ...
7

8 head_motion = HeadMotion(robot.manager,
9 robot.joints['head_y'], robot.joints['head_p'])

10 head_motion.start()
11

12 ...
13

14 robot.stop()

14 Chapter 2. roboglia Quick Start

CHAPTER

THREE

API REFERENCE

3.1 base Module

Classes in roboglia can be categorized in two groups in relation to their position to the main robot class:

• Downstream classes: are classes that are located between the robot class and the physical devices.

• Upstream classes are classes that expose the robot capabilities in a uniform way like ‘joints’, ‘sensors’, ‘moves’,
etc.

Downstream

The following classes from base module are provided for representing various structural elements of a robot.

Buses

BaseBus A base abstract class for handling an arbitrary bus.
FileBus A bus that writes to a file with cache provided for testing

purposes.
SharedBus Implements a bus that provides a locking mechanism

for the access to the underlying hardware, aimed specifi-
cally for use in multi-threaded environments where mul-
tiple jobs could compete for access to one single bus.

SharedFileBus This is a FileBus class that was wrapped for access to
a shared resource.

3.1.1 roboglia.base.BaseBus

class BaseBus(name='BUS', robot=None, port='', auto=True, **kwargs)
Bases: object

A base abstract class for handling an arbitrary bus.

You will normally subclass BaseBus and define particular functionality specific to the bus by implementing the
methods of the BaseBus. This class only stores the name of the bus and the access to the physical object. Your
subclass can add additional attributes and methods to deal with the particularities of the real bus represented.

Parameters

• name (str) – The name of the bus

• robot (BaseRobot) – A reference to the robot using the bus

• port (any) – An identification for the physical bus access. Some busses have string de-
scription like /dev/ttySC0 while others could be just integers (like in the case of I2C or

15

roboglia, Release 0.1.0

SPI buses)

• auto (Bool) – If True the bus will be opened when the robot is started by calling
BaseRobot.start(). If False the bus will be left closed during robot initialization
and needs to be opened by the programmer.

• Raises – KeyError: if port not supplied

__init__(name='BUS', robot=None, port='', auto=True, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property name
(read-only) the bus name.

property robot
The robot that owns the bus.

property port
(read-only) the bus port.

property auto_open
Indicates if the bus should be opened by the robot when initializing.

open()
Opens the actual physical bus. Must be overridden by the subclass.

close()
Closes the actual physical bus. Must be overridden by the subclass, but the implementation in the subclass
should first check for the return from this method before actually closing the bus as dependent object on
this bus might be affected:

def close(self):
if super().close()

... do the close activities
optional; the handling in the ``BaseBus.close()`` will
issue error message to log
else:

logger.<level>('message')

__repr__()
Returrns a representation of a BaseBus that includes the name of the class, the port and the status (open or
closed).

property is_open
Returns True or False if the bus is open. Must be overridden by the subclass.

read(reg)
Reads one register information from the bus. Must be overridden.

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns Typically it would return an int that will have to be handled by the caller.

Return type int

write(reg, val)
Writes one register information from the bus. Must be overridden.

Parameters

16 Chapter 3. API Reference

roboglia, Release 0.1.0

• reg (BaseRegister or subclass) – The register object that needs to be written.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it actual device.

• val (int) – The value needed to the written to the device.

3.1.2 roboglia.base.FileBus

class FileBus(name='FILEBUS', robot=None, port='', auto=True, **kwargs)
Bases: roboglia.base.bus.BaseBus

A bus that writes to a file with cache provided for testing purposes.

Writes by this class are send to a file stream and also buffered in a local memory. Reads use this buffer to return
values or use the default values from the register defintion.

Same parameters as BaseBus.

__init__(name='FILEBUS', robot=None, port='', auto=True, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

open()
Opens the file associated with the FileBus.

close()
Closes the file associated with the FileBus.

property is_open
Returns True is the file is opened.

write(reg, value)
Updates the values in the FileBus.

The method will update the buffer with the value provided then will log the write on the file. A flush() is
performed in case you want to inspect the content of the file while the robot is running.

File writing errors are intercepted and logged but no Exception is raised.

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be written.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it actual device.

• value (int) – The value needed to the written to the device.

read(reg)
Reads the value from the buffer of FileBus and logs it.

The method intercepts the raise errors from writing to the physical file and converts them to errors in
the log file so that the rest of the program can continue uninterrupted.

The method will try to read from the buffer the value. If there is no value in the buffer it will be defaulted
from the register’s default value. The method will log the read to the file and return the value.

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns Typically it would return an int that will have to be handled by the caller.

3.1. base Module 17

roboglia, Release 0.1.0

Return type int

__str__()
The string representation of the FileBus is a dump of the internal buffer.

__repr__()
Returrns a representation of a BaseBus that includes the name of the class, the port and the status (open or
closed).

property auto_open
Indicates if the bus should be opened by the robot when initializing.

property name
(read-only) the bus name.

property port
(read-only) the bus port.

property robot
The robot that owns the bus.

3.1.3 roboglia.base.SharedBus

class SharedBus(BusClass, timeout=0.5, **kwargs)
Bases: object

Implements a bus that provides a locking mechanism for the access to the underlying hardware, aimed specifi-
cally for use in multi-threaded environments where multiple jobs could compete for access to one single bus.

Note: This class implements __getattr__ so that any calls to an instance of this class that are not already
implemented bellow will be passed to the internal instance of BusClass that was created at instantiation. This
way you can access all the attributes and methods of the BusClass instance transparently, as long as they are
not already overridden by this class.

Parameters

• BusClass (BaseBus subclass) – The class that will be wrapped by the SharedBus

• timeout (float) – A timeout for acquiring the lock that controls the access to the bus

• **kwargs – keyword arguments that are passed to the BusClass for instantiation

__init__(BusClass, timeout=0.5, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property timeout
Returns the timeout for requesting access to lock.

can_use()
Tries to acquire the resource on behalf of the caller.

This method should be called every time a user of the bus wants to perform an operation. If the result is
False the user does not have exclusive use of the bus and the actions are not guaranteed.

Warning: It is the responsibility of the user to call stop_using() as soon as possible after pre-
forming the intended work with the bus if this method grants it access. Failing to do so will result in
the bus being blocked by this user and prohibiting other users to access it.

18 Chapter 3. API Reference

roboglia, Release 0.1.0

Returns True if managed to acquire the resource, False if not. It is the responsibility of the
caller to decide what to do in case there is a False return including logging or Raising.

Return type bool

stop_using()
Releases the resource.

naked_read(reg)
Calls the main bus read without invoking the lock. This is intended for those users that plan to use a series
of read operations and they do not want to lock and release the bus every time, as this adds some overhead.
Since the original bus’ read method is overridden (see below), any calls to read from a user will result
in using the wrapped version defined in this class. Therefore in the scenario that the user wants to execute
a series of quick reads the naked_read can be used as long as the user wraps the calls correctly for
obtaining exclusive access:

if bus.can_use():
val1 = bus.naked_read(reg1)
val2 = bus.naked_read(reg2)
val3 = bus.naked_read(reg3)
...
bus.stop_using()

else:
logger.warning('some warning')

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns Typically it would return an int that will have to be handled by the caller.

Return type int

naked_write(reg, value)
Calls the main bus write without invoking the lock. This is intended for those users that plan to use a
series of write operations and they do not want to lock and release the bus every time, as this adds some
overhead. Since the original bus’ write method is overridden (see below), any calls to write from a
user will result in using the wrapped version defined in this class. Therefore in the scenario that the user
wants to execute a series of quick writes the naked_write can be used as long as the user wraps the
calls correctly for obtaining exclusive access:

if bus.can_use():
val1 = bus.naked_write(reg1, val1)
val2 = bus.naked_write(reg2, val2)
val3 = bus.naked_write(reg3, val3)
...
bus.stop_using()

else:
logger.warning('some warning')

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be read.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it to the caller.

3.1. base Module 19

roboglia, Release 0.1.0

• value (int) – The value needed to the written to the device.

read(reg)
Overrides the main bus’ read() method and performs a safe read by wrapping the read call in a request
to acquire the bus.

If the method is not able to acquire the bus in time (times out) it will log an error and return None.

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns The value read for this register or None is the call failed to secure with bus within the
timeout.

Return type int

write(reg, value)
Overrides the main bus’ ~roboglia.base.BaseBus.write method and performs a safe write by wrapping the
main bus write call in a request to acquire the bus.

If the method is not able to acquire the bus in time (times out) it will log an error.

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be read.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it to the caller.

• value (int) – The value to be written to the device.

__repr__()
Invokes the main bus representation but changes the class name with the “Shared” class name to show a
more accurate picture of the object.

__getattr__(name)
Forwards all unanswered calls to the main bus instance.

3.1.4 roboglia.base.SharedFileBus

class SharedFileBus(**kwargs)
Bases: roboglia.base.bus.SharedBus

This is a FileBus class that was wrapped for access to a shared resource.

All FileBus methods and attributes are accessible transparently but please be aware that the methods
read and write are now safe, wrapped around calls to SharedBus.can_use() and SharedBus.
stop_using(). Additionally the two new access methods naked_read() and naked_write() are
available.

Note: You should always use a SharedFileBus class if you plan to use sync loops that run in separate
threads and they will have access to the same bus.

SharedFileBus inherits all the paramters from FileBus as well as the ones from the meta-class
SharedBus. Please refer to these for a detail documentation of the parameters.

20 Chapter 3. API Reference

roboglia, Release 0.1.0

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

__str__()
Return str(self).

__getattr__(name)
Forwards all unanswered calls to the main bus instance.

__repr__()
Invokes the main bus representation but changes the class name with the “Shared” class name to show a
more accurate picture of the object.

can_use()
Tries to acquire the resource on behalf of the caller.

This method should be called every time a user of the bus wants to perform an operation. If the result is
False the user does not have exclusive use of the bus and the actions are not guaranteed.

Warning: It is the responsibility of the user to call stop_using() as soon as possible after pre-
forming the intended work with the bus if this method grants it access. Failing to do so will result in
the bus being blocked by this user and prohibiting other users to access it.

Returns True if managed to acquire the resource, False if not. It is the responsibility of the
caller to decide what to do in case there is a False return including logging or Raising.

Return type bool

naked_read(reg)
Calls the main bus read without invoking the lock. This is intended for those users that plan to use a series
of read operations and they do not want to lock and release the bus every time, as this adds some overhead.
Since the original bus’ read method is overridden (see below), any calls to read from a user will result
in using the wrapped version defined in this class. Therefore in the scenario that the user wants to execute
a series of quick reads the naked_read can be used as long as the user wraps the calls correctly for
obtaining exclusive access:

if bus.can_use():
val1 = bus.naked_read(reg1)
val2 = bus.naked_read(reg2)
val3 = bus.naked_read(reg3)
...
bus.stop_using()

else:
logger.warning('some warning')

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns Typically it would return an int that will have to be handled by the caller.

Return type int

naked_write(reg, value)
Calls the main bus write without invoking the lock. This is intended for those users that plan to use a
series of write operations and they do not want to lock and release the bus every time, as this adds some

3.1. base Module 21

roboglia, Release 0.1.0

overhead. Since the original bus’ write method is overridden (see below), any calls to write from a
user will result in using the wrapped version defined in this class. Therefore in the scenario that the user
wants to execute a series of quick writes the naked_write can be used as long as the user wraps the
calls correctly for obtaining exclusive access:

if bus.can_use():
val1 = bus.naked_write(reg1, val1)
val2 = bus.naked_write(reg2, val2)
val3 = bus.naked_write(reg3, val3)
...
bus.stop_using()

else:
logger.warning('some warning')

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be read.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it to the caller.

• value (int) – The value needed to the written to the device.

read(reg)
Overrides the main bus’ read() method and performs a safe read by wrapping the read call in a request
to acquire the bus.

If the method is not able to acquire the bus in time (times out) it will log an error and return None.

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns The value read for this register or None is the call failed to secure with bus within the
timeout.

Return type int

stop_using()
Releases the resource.

property timeout
Returns the timeout for requesting access to lock.

write(reg, value)
Overrides the main bus’ ~roboglia.base.BaseBus.write method and performs a safe write by wrapping the
main bus write call in a request to acquire the bus.

If the method is not able to acquire the bus in time (times out) it will log an error.

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be read.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it to the caller.

• value (int) – The value to be written to the device.

22 Chapter 3. API Reference

roboglia, Release 0.1.0

Registers

BaseRegister A minimal representation of a device register.
BoolRegister A register with BOOL representation (true/false).
RegisterWithConversion A register with an external representation that is pro-

duced by using a linear transformation.
RegisterWithDynamicConversion A register that, in addition to the conversions provided

by RegisterWithConversion can use the value
provided by another register in the device as a factor
adjustment.

RegisterWithThreshold A register with an external representation that is rep-
resented by a threshold between negative and positive
values.

RegisterWithMapping A register that can specify a 1:1 mapping of internal val-
ues to external values.

3.1.5 roboglia.base.BaseRegister

class BaseRegister(name='REGISTER', device=None, address=0, clone=None, size=1, minim=0,
maxim=None, access='R', sync=False, word=False, bulk=True, order='LH', de-
fault=0, **kwargs)

Bases: object

A minimal representation of a device register.

Parameters

• name (str) – The name of the register

• device (BaseDevice or subclass) – The device where the register is attached to

• address (int (typpically but some devices might use other
addressing)) – The register address

• size (int) – The register size in bytes; defaults to 1

• minim (int) – Minimum value represented in register in internal format; defaults to 0

• maxim (int) – Maximum value represented in register; defaults to 2^size - 1. The setter
method for internal value will check that the desired value is within the [min, max] and trim
it accordingly

• access (str) – Read (‘R’) or read-write (‘RW’); default ‘R’

• clone (BaseRegister or subclass or None) – Indicates if the register is a clone; this value
provides the reference to the register object that acts as the main register in interation with
the communication bus. This allows you to define multiple represtnations of the same physi-
cal register (at a given address) with the purpose of having different external representations.
For example:

– you can have a position register that can provide the external value in degrees or radians,

– a velocity register that can provide the external value in degrees per second, radians per
second or rotations per minute,

– a byte register that reads 8 inputs and mask them each as a BoolRegister with a
different bit mask

3.1. base Module 23

roboglia, Release 0.1.0

In the device definition YAML file use True to indicate if a register is a clone. The device
constructor will replace the reference of the main register with the same address in the
constructor of this register.

• sync (bool) – True if the register will be updated from the real device using a sync loop.
If sync is False access to the register through the value property will invoke reading /
writing to the real register; default False

• word (bool) – Indicates that the register is a word register (16 bits) instead of a usual 8
bits. Some I2C and SPI devices use 16bit registers and need to use separate access functions
to read them as opposed to the 8 bit registers. Default is False which effectively makes it
an 8 bit register

• order (LH or HL) – Applicable only for registers with size > 1 that represent a value over
successive internal registers, but for convenience are groupped as one single register with
size 2 (or higher). LH means low-high and indicates the bytes in the registry are organized
starting with the low byte first. HL indicates that the registers are with the high byte first.
Technically the read and write functions always read the bytes in the order they are
stored in the device and if the register is marked as HL the list is reversed before being
returned to the requester or processed as a number in case the bulk is False. Default is
LH.

• default (int) – The default value for the register; implicit 0

__init__(name='REGISTER', device=None, address=0, clone=None, size=1, minim=0,
maxim=None, access='R', sync=False, word=False, bulk=True, order='LH', default=0,
**kwargs)

Initialize self. See help(type(self)) for accurate signature.

property name
Register’s name.

property device
The device the register belongs to.

property address
The register’s address in the device.

property clone
Indicates the register is a clone of another.

property size
The regster’s size in Bytes.

property minim
The register’s minimum value in internal format.

property maxim
The register’s maximum value in internal format.

property range
Tuple with (minim, maxim) values in internal format.

property min_ext
The register’s minimum value in external format.

property max_ext
The register’s maximum value in external format.

property range_ext
Tuple with (minim, maxim) values in external format.

24 Chapter 3. API Reference

roboglia, Release 0.1.0

property access
Register’s access mode.

property sync
Register is subject to a sync loop update.

property word
Indicates if the register is an 16 bit register (True) or an 8 bit register.

property order
Indicates the order of the data representartion; low-high (LH) or high-low (HL)

property default
The register’s default value in internal format.

property int_value
Internal value of register, if a clone return the value of the main register.

value_to_external(value)
Converts the presented value to external format according to register’s settings. This method should be
overridden by subclasses in case they have specific conversions to do.

Parameters value (int) – A value (internal representation) to be converted.

Returns For BaseRegister it returns the same value unchanged.

Return type int

value_to_internal(value)
Converts the presented value to internal format according to register’s settings. This method should be
overridden by subclasses in case they have specific conversions to do.

Parameters value (int) – A value (external representation) to be converted.

Returns For BaseRegister it returns the same value unchanged.

Return type int

property value
Provides the value of the register in external format. If the register is not marked for sync then it requests
the device to perform a read in order to refresh the content of the register.

Returns The value of the register in the external format. It invokes value_to_external()
which can be overridden by subclasses to provide different representations of the register’s
value (hence the any return type).

Return type any

write()
Performs the actual writing of the internal value of the register to the device. Calls the device’s method to
write the value of register.

read()
Performs the actual reading of the internal value of the register from the device. Calls the device’s method
to read the value of register.

__str__()
Representation of the register [name]: value.

3.1. base Module 25

roboglia, Release 0.1.0

3.1.6 roboglia.base.BoolRegister

class BoolRegister(bits=None, mode='any', mask=None, **kwargs)
Bases: roboglia.base.register.BaseRegister

A register with BOOL representation (true/false).

Inherits from BaseRegister all methods. Overrides value_to_external and value_to_internal to process a
bool value.

Parameters

• bits (int or None) – An optional bit pattern to use in the determination of the output of
the register. Default is None and in this case we simply compare the internal value with 0.

• mode (str ('all' or 'any')) – Indicates how the bit pattern should be used: ‘all’
means all the bits in the pattern must match while ‘any’ means any bit that matches the
pattern is enough to result in a True external value. Only used if bits is not None. Default
is ‘any’.

• mask (int or None) – An optional mask that allows for partial bit handling on the internal
values. This mask permits handling only the specified bits without affecting the other ones
in the internal value. For instance if the mask is 0b00001111 then the operations (setter,
getter) will only affect the most significant 4 bits of the register.

__init__(bits=None, mode='any', mask=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property bits
The bit pattern used.

property mode
The bitmasking mode (‘all’ or ‘any’).

property mask
The partial bitmask for the handling of the bits.

value_to_external(value)
The external representation of bool register.

value_to_internal(value)
The internal representation of the register’s value.

__str__()
Representation of the register [name]: value.

property access
Register’s access mode.

property address
The register’s address in the device.

property clone
Indicates the register is a clone of another.

property default
The register’s default value in internal format.

property device
The device the register belongs to.

property int_value
Internal value of register, if a clone return the value of the main register.

26 Chapter 3. API Reference

roboglia, Release 0.1.0

property max_ext
The register’s maximum value in external format.

property maxim
The register’s maximum value in internal format.

property min_ext
The register’s minimum value in external format.

property minim
The register’s minimum value in internal format.

property name
Register’s name.

property order
Indicates the order of the data representartion; low-high (LH) or high-low (HL)

property range
Tuple with (minim, maxim) values in internal format.

property range_ext
Tuple with (minim, maxim) values in external format.

read()
Performs the actual reading of the internal value of the register from the device. Calls the device’s method
to read the value of register.

property size
The regster’s size in Bytes.

property sync
Register is subject to a sync loop update.

property value
Provides the value of the register in external format. If the register is not marked for sync then it requests
the device to perform a read in order to refresh the content of the register.

Returns The value of the register in the external format. It invokes value_to_external()
which can be overridden by subclasses to provide different representations of the register’s
value (hence the any return type).

Return type any

property word
Indicates if the register is an 16 bit register (True) or an 8 bit register.

write()
Performs the actual writing of the internal value of the register to the device. Calls the device’s method to
write the value of register.

3.1. base Module 27

roboglia, Release 0.1.0

3.1.7 roboglia.base.RegisterWithConversion

class RegisterWithConversion(factor=1.0, offset=0, sign_bit=None, **kwargs)
Bases: roboglia.base.register.BaseRegister

A register with an external representation that is produced by using a linear transformation:

external = (internal - offset) / factor
internal = external * factor + offset

The RegisterWithConversion inherits all the paramters from BaseRegister and in addition includes
the following specific parameters that are used when converting the data from internal to external format.

Parameters

• factor (float) – A factor used for conversion. Defaults to 1.0.

• offset (int) – The offset for the conversion; defaults to 0 (int)

• sign_bit (int or None) – If a number is given it means that the register is “signed”
and that bit represents the sign. Bits are numbered from 1 meaning that if sign_bit is 1
the less significant bit is used and if we have a 2 bytes register the most significant bit would
be 16. The convention is that numbers having 0 in this bit are positive and the ones having
1 are negative numbers.

• Raises – KeyError: if any of the mandatory fields are not provided ValueError: if value
provided are wrong or the wrong type

__init__(factor=1.0, offset=0, sign_bit=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property factor
The conversion factor for external value.

property offset
The offset for external value.

property sign_bit
The sign bit, if any.

value_to_external(value)
The external representation of the register’s value.

Performs the translation of the value according to:

external = (internal - offset) / factor

value_to_internal(value)
The internal representation of the register’s value.

Performs the translation of the value according to:

internal = external * factor + offset

The resulting value is rounded to produce an integer suitable to be stored in the register.

__str__()
Representation of the register [name]: value.

property access
Register’s access mode.

28 Chapter 3. API Reference

roboglia, Release 0.1.0

property address
The register’s address in the device.

property clone
Indicates the register is a clone of another.

property default
The register’s default value in internal format.

property device
The device the register belongs to.

property int_value
Internal value of register, if a clone return the value of the main register.

property max_ext
The register’s maximum value in external format.

property maxim
The register’s maximum value in internal format.

property min_ext
The register’s minimum value in external format.

property minim
The register’s minimum value in internal format.

property name
Register’s name.

property order
Indicates the order of the data representartion; low-high (LH) or high-low (HL)

property range
Tuple with (minim, maxim) values in internal format.

property range_ext
Tuple with (minim, maxim) values in external format.

read()
Performs the actual reading of the internal value of the register from the device. Calls the device’s method
to read the value of register.

property size
The regster’s size in Bytes.

property sync
Register is subject to a sync loop update.

property value
Provides the value of the register in external format. If the register is not marked for sync then it requests
the device to perform a read in order to refresh the content of the register.

Returns The value of the register in the external format. It invokes value_to_external()
which can be overridden by subclasses to provide different representations of the register’s
value (hence the any return type).

Return type any

property word
Indicates if the register is an 16 bit register (True) or an 8 bit register.

3.1. base Module 29

roboglia, Release 0.1.0

write()
Performs the actual writing of the internal value of the register to the device. Calls the device’s method to
write the value of register.

3.1.8 roboglia.base.RegisterWithDynamicConversion

class RegisterWithDynamicConversion(factor_reg=None, **kwargs)
Bases: roboglia.base.register.RegisterWithConversion

A register that, in addition to the conversions provided by RegisterWithConversion can use the value
provided by another register in the device as a factor adjustment.

Parameters

• factor_reg (str) – The name of the register that provides the additional factor adjust-
ment.

• Raises – KeyError: if any of the mandatory fields are not provided ValueError: if value
provided are wrong or the wrong type

__init__(factor_reg=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property factor_reg
The register providing the additional conversion.

value_to_external(value)
The external representation of the register’s value.

Performs the translation of the value according to:

external = (internal - offset) / factor * dynamic_factor

value_to_internal(value)
The internal representation of the register’s value.

Performs the translation of the value according to:

internal = external * factor / dynamic_factor + offset

The resulting value is rounded to produce an integer suitable to be stored in the register.

__str__()
Representation of the register [name]: value.

property access
Register’s access mode.

property address
The register’s address in the device.

property clone
Indicates the register is a clone of another.

property default
The register’s default value in internal format.

property device
The device the register belongs to.

property factor
The conversion factor for external value.

30 Chapter 3. API Reference

roboglia, Release 0.1.0

property int_value
Internal value of register, if a clone return the value of the main register.

property max_ext
The register’s maximum value in external format.

property maxim
The register’s maximum value in internal format.

property min_ext
The register’s minimum value in external format.

property minim
The register’s minimum value in internal format.

property name
Register’s name.

property offset
The offset for external value.

property order
Indicates the order of the data representartion; low-high (LH) or high-low (HL)

property range
Tuple with (minim, maxim) values in internal format.

property range_ext
Tuple with (minim, maxim) values in external format.

read()
Performs the actual reading of the internal value of the register from the device. Calls the device’s method
to read the value of register.

property sign_bit
The sign bit, if any.

property size
The regster’s size in Bytes.

property sync
Register is subject to a sync loop update.

property value
Provides the value of the register in external format. If the register is not marked for sync then it requests
the device to perform a read in order to refresh the content of the register.

Returns The value of the register in the external format. It invokes value_to_external()
which can be overridden by subclasses to provide different representations of the register’s
value (hence the any return type).

Return type any

property word
Indicates if the register is an 16 bit register (True) or an 8 bit register.

write()
Performs the actual writing of the internal value of the register to the device. Calls the device’s method to
write the value of register.

3.1. base Module 31

roboglia, Release 0.1.0

3.1.9 roboglia.base.RegisterWithThreshold

class RegisterWithThreshold(factor=1.0, threshold=None, **kwargs)
Bases: roboglia.base.register.BaseRegister

A register with an external representation that is represented by a threshold between negative and positive values:

if internal >= threshold:
external = (internal - threshold) / factor

else:
external = - internal / factor

and for conversion from external to internal:

if external >= 0:
internal = external * factor + threshold

else:
internal = - external * factor

The RegisterWithThreshold inherits all the paramters from BaseRegister and in addition includes
the following specific parameters that are used when converting the data from internal to external format.

Parameters

• factor (float) – A factor used for conversion. Defaults to 1.0

• threshold (int) – A threshold that separates the positive from negative values. Must be
supplied.

• Raises – KeyError: if any of the mandatory fields are not proviced ValueError: if value
provided are wrong or the wrong type

__init__(factor=1.0, threshold=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property factor
Conversion factor.

property threshold
The threshold for conversion.

value_to_external(value)
The external representation of the register’s value.

Performs the translation of the value according to:

if value < threshold:
external = value / factor

else:
external = (threshold - value) / factor

value_to_internal(value)
The internal representation of the register’s value.

Performs the translation of the value according to:

if value > 0:
internal = value * factor

else:
internal = (-value) * factor + threshold

32 Chapter 3. API Reference

roboglia, Release 0.1.0

__str__()
Representation of the register [name]: value.

property access
Register’s access mode.

property address
The register’s address in the device.

property clone
Indicates the register is a clone of another.

property default
The register’s default value in internal format.

property device
The device the register belongs to.

property int_value
Internal value of register, if a clone return the value of the main register.

property max_ext
The register’s maximum value in external format.

property maxim
The register’s maximum value in internal format.

property min_ext
The register’s minimum value in external format.

property minim
The register’s minimum value in internal format.

property name
Register’s name.

property order
Indicates the order of the data representartion; low-high (LH) or high-low (HL)

property range
Tuple with (minim, maxim) values in internal format.

property range_ext
Tuple with (minim, maxim) values in external format.

read()
Performs the actual reading of the internal value of the register from the device. Calls the device’s method
to read the value of register.

property size
The regster’s size in Bytes.

property sync
Register is subject to a sync loop update.

property value
Provides the value of the register in external format. If the register is not marked for sync then it requests
the device to perform a read in order to refresh the content of the register.

Returns The value of the register in the external format. It invokes value_to_external()
which can be overridden by subclasses to provide different representations of the register’s
value (hence the any return type).

Return type any

3.1. base Module 33

roboglia, Release 0.1.0

property word
Indicates if the register is an 16 bit register (True) or an 8 bit register.

write()
Performs the actual writing of the internal value of the register to the device. Calls the device’s method to
write the value of register.

3.1.10 roboglia.base.RegisterWithMapping

class RegisterWithMapping(mask=None, mapping={}, **kwargs)
Bases: roboglia.base.register.BaseRegister

A register that can specify a 1:1 mapping of internal values to external values.

Parameters

• mask (int or None) – Optional, can indicate that only certain bits from the value of the
register are used in the mapping. Ex. using 0b11110000 as a mask indicates that only the
most significant 4 bits of the internal value are significant for the conversion to external
values.

• mapping (dict) – A dictionary that provides {internal : external} mapping. Internally
the register will construct a reverse mapping that is used in converting external values to
internal ones.

__init__(mask=None, mapping={}, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__str__()
Representation of the register [name]: value.

property access
Register’s access mode.

property address
The register’s address in the device.

property clone
Indicates the register is a clone of another.

property default
The register’s default value in internal format.

property device
The device the register belongs to.

property int_value
Internal value of register, if a clone return the value of the main register.

property mapping
external}.

Type The mapping {internal

property max_ext
The register’s maximum value in external format.

property maxim
The register’s maximum value in internal format.

property min_ext
The register’s minimum value in external format.

34 Chapter 3. API Reference

roboglia, Release 0.1.0

property minim
The register’s minimum value in internal format.

property name
Register’s name.

property order
Indicates the order of the data representartion; low-high (LH) or high-low (HL)

property range
Tuple with (minim, maxim) values in internal format.

property range_ext
Tuple with (minim, maxim) values in external format.

read()
Performs the actual reading of the internal value of the register from the device. Calls the device’s method
to read the value of register.

property size
The regster’s size in Bytes.

property sync
Register is subject to a sync loop update.

property value
Provides the value of the register in external format. If the register is not marked for sync then it requests
the device to perform a read in order to refresh the content of the register.

Returns The value of the register in the external format. It invokes value_to_external()
which can be overridden by subclasses to provide different representations of the register’s
value (hence the any return type).

Return type any

property word
Indicates if the register is an 16 bit register (True) or an 8 bit register.

write()
Performs the actual writing of the internal value of the register to the device. Calls the device’s method to
write the value of register.

property inv_mapping
internal}.

Type The mapping {external

property mask
The bit mask is any.

value_to_external(value)
Converts the internal value of the register to external format. Applies mask on the internal value if one
specified before checking the mapping. If no entry is found returns 0.

value_to_internal(value)
Converts the external value into an internal value using the inverse mapping dictionary. If no entry is found
logs a warning and returns the already existing value in the int_value. If mask was specified it only
affects the bits specified in the mask.

Devices

3.1. base Module 35

roboglia, Release 0.1.0

BaseDevice A base virtual class for all devices.

3.1.11 roboglia.base.BaseDevice

class BaseDevice(name='DEVICE', bus=None, dev_id=None, model=None, path=None, inits=[],
**kwargs)

Bases: object

A base virtual class for all devices.

A BaseDevice is a surrogate representation of an actual device, characterized by a number of internal registers
that can be read or written to by the means of a comunication bus. Any device is based on a model that identifies
the .yml file describing the structure of the device (the registers).

Parameters

• name (str) – The name of the device

• bus (BaseBus or subclass) – The bus object where the device is attached to

• id (int) – The device ID on the bus. Typically it is an int but some buses may use a
different identifier. The processing should still work fine.

• model (str) – A string used to identify the device description. Please see the note bellow
regarding the position of the device description files.

• path (str) – A path to the model file in case you want to use custom defined devices
that are not available in the roboglia repository. Please see the note bellow regarding the
position of the device description files.

• inits (list) – A list of init templates to be applied to the device’s registers when the
open() method is called, where template names were defined earier in the robot defini-
tion in the inits section. Please note the initialization values should be provided in the
external format of the register as they will be used as:

register.value = dict_value

As no syncs are currently implemented this will automatically trigger a write call to store
that value in the device.

Raises KeyError – if mandatory parameters are not found or unexpected values are used (ex. for
boolean)

cache = {}
A chache of device models that is updated when a new model is encountered and reused when the same
model is requested during device creation.

__init__(name='DEVICE', bus=None, dev_id=None, model=None, path=None, inits=[], **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property name
Device name.

Returns The name of the device

Return type str

property registers
Device registers as dict.

Returns The dictionary of registers with the register name as key.

36 Chapter 3. API Reference

roboglia, Release 0.1.0

Return type dict

register_by_address(address)
Returns the register identified by the given address. If the address is not available in the device it will
return None.

Returns The device at address or None if no register with that address exits.

Return type BaseDevice or subclass or None

property dev_id
The device number.

Returns The device number

Return type int

property bus
The bus where the device is connected to.

Returns The bus object using this device.

Return type BaseBus or SharedBus or subclass

get_model_path()
Builds the path to the device description documents.

By default it will return the path to the roboglia/base/devices/ directory.

Returns A full document path.

Return type str

default_register()
Default register for the device in case is not explicitly provided in the device definition file.

Subclasses of BaseDevice can overide the method to derive their own class.

BaseDevice suggests as default register BaseRegister.

read_register(register)
Implements the read of a register using the associated bus. More complex devices should overwrite the
method to provide specific functionality.

BaseDevice simply calls the bus’s read function and returns the value received.

write_register(register, value)
Implements the write of a register using the associated bus. More complex devices should overwrite the
method to provide specific functionality.

BaseDevice simply calls the bus’s write function and returns the value received.

open()
Performs initialization of the device by reading all registers that are not flagged for sync replication and,
if init parameter provided initializes the indicated registers with the values from the init paramters.

close()
Perform device closure. BaseDevice implementation does nothing.

__str__()
Return str(self).

Threads and Loops

3.1. base Module 37

roboglia, Release 0.1.0

BaseThread Implements a class that wraps a processing logic that is
executed in a separate thread with the ability to pause /
resume or fully stop the task.

BaseLoop This is a thread that executes in a separate thread,
scheduling a certain atomic work (encapsulated in the
atomic method) periodically as prescribed by the fre-
quency parameter.

BaseSync Base processing for a sync loop.
BaseReadSync A SyncLoop that performs a naive read of the registers

by sequentially calling the read on each of them.
BaseWriteSync A SyncLoop that performs a naive write of the registers

by sequentially calling the read on each of them.

3.1.12 roboglia.base.BaseThread

class BaseThread(name='THREAD', patience=1.0)
Bases: object

Implements a class that wraps a processing logic that is executed in a separate thread with the ability to pause /
resume or fully stop the task.

The main processing should be implemented in the run method where the subclass should make sure that it
checks periodically the status (paused or stopped) and behave appropriately. The run can be flanked by the setup
and teardown methods where subclasses can implement logic needed before the main processing is started or
finished.

This becomes very handy for loops that normally prepare the work, then run for an indefinite time, and later are
closed when the owner signals.

Parameters

• name (str) – The name of the thread.

• patience (float) – A duration in seconds that the main thread will wait for the back-
ground thread to finish setup activities and indicate that it is in started mode.

__init__(name='THREAD', patience=1.0)
Initialize self. See help(type(self)) for accurate signature.

property name
Returns the name of the thread.

setup()
Thread preparation before running. Subclasses should override

run()
Run method of the thread.

teardown()
Thread cleanup. Subclasses should override.

property started
Indicates if the thread was started.

property stopped
Indicates if the thread was stopped.

property running
Indicates if the thread is running.

38 Chapter 3. API Reference

roboglia, Release 0.1.0

property paused
Indicates the thread was paused.

start(wait=True)
Starts the task in it’s own thread.

stop(wait=True)
Sends the stopping signal to the thread. By default waits for the thread to finish.

pause()
Requests the thread to pause.

resume()
Requests the thread to resume.

3.1.13 roboglia.base.BaseLoop

class BaseLoop(name='BASELOOP', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0)

Bases: roboglia.base.thread.BaseThread

This is a thread that executes in a separate thread, scheduling a certain atomic work (encapsulated in the atomic
method) periodically as prescribed by the frequency parameter. The run method takes care of checking the flags
for paused and stopped so there is no need to do this in the atomic method.

Parameters

• name (str) – The name of the loop

• patience (float) – A duration in seconds that the main thread will wait for the back-
ground thread to finish setup activities and indicate that it is in started mode.

• frequency (float) – The loop frequency in [Hz]

• warning (float) – Indicates a threshold in range [0..1] indicating when warnings should
be logged to the logger in case the execution frequency is bellow the target. A 0.8 value
indicates the real execution is less than 0.8 * target_frequency. The statistic is calculated
over a period of time specified by the parameter review.

• throttle (float) – Is a float (< 1.0) that is used by the monitoring of execution statistics
to adjust the wait time in order to produce the desired processing frequency.

• review (float) – The time in [s] to calculate the statistics for the frequency.

Raises

• KeyError and ValueError if provided data in the
initialization –

• dictionary are incorrect or missing. –

__init__(name='BASELOOP', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0)

Initialize self. See help(type(self)) for accurate signature.

property frequency
Loop frequency.

property period
Loop period = 1 / frequency.

3.1. base Module 39

roboglia, Release 0.1.0

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

run()
Run method of the thread.

atomic()
This method implements the periodic task that needs to be executed. It does not need to check paused or
stopped as the run method does this already and the subclasses should make sure that the implementation
completes quickly and does not raise any exceptions.

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

resume()
Requests the thread to resume.

property running
Indicates if the thread is running.

setup()
Thread preparation before running. Subclasses should override

start(wait=True)
Starts the task in it’s own thread.

property started
Indicates if the thread was started.

stop(wait=True)
Sends the stopping signal to the thread. By default waits for the thread to finish.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

3.1.14 roboglia.base.BaseSync

class BaseSync(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Bases: roboglia.base.thread.BaseLoop

Base processing for a sync loop.

This class is intended to be subclassed to provide specific functionality. It only parses the common elements
that a sync loop would need: the devices (provided by a group) and registers (provided by a list). It will check
that the provided devices are on the same bus and that the provided registers exist in all devices.

40 Chapter 3. API Reference

roboglia, Release 0.1.0

Note: Please note that this class does not actually perform any sync. Use the subclasses BaseReadSync or
BaseWriteSync that implement read or write syncs.

BaseSync inherits the parameters from BaseLoop. In addition it includes the following parameters.

Parameters

• name (str) – The name of the sync

• patience (float) – A duration in seconds that the main thread will wait for the back-
ground thread to finish setup activities and indicate that it is in started mode.

• frequency (float) – The sync frequency in [Hz]

• warning (float) – Indicates a threshold in range [0..1] indicating when warnings should
be logged to the logger in case the execution frequency is bellow the target. A 0.8 value
indicates the real execution is less than 0.8 * target_frequency. The statistic is calculated
over a period of time specified by the parameter review.

• throttle (float) – Is a float (< 1.0) that is used by the monitoring of execution statistics
to adjust the wait time in order to produce the desired processing frequency.

• review (float) – The time in [s] to calculate the statistics for the frequency.

• group (set) – The set with the devices used by sync; normally the robot constructor
replaces the name of the group from YAML file with the actual set built earlier in the ini-
tialization.

• registers (list of str) – A list of register names (as strings) used by the sync

• auto (bool) – If the sync loop should start automatically when the robot starts; defaults
to True

Raises KeyError – if mandatory parameters are not found:

__init__(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Initialize self. See help(type(self)) for accurate signature.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

property devices
The devices used by the sync.

property register_names
The register names used by the sync.

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This
method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

process_registers()
Checks that the supplied registers are available in all devices.

3.1. base Module 41

roboglia, Release 0.1.0

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

stop()
Before calling the inherited method it un-flags the registers for syncing.

atomic()
This method implements the periodic task that needs to be executed. It does not need to check paused or
stopped as the run method does this already and the subclasses should make sure that the implementation
completes quickly and does not raise any exceptions.

property frequency
Loop frequency.

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

setup()
Thread preparation before running. Subclasses should override

property started
Indicates if the thread was started.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

42 Chapter 3. API Reference

roboglia, Release 0.1.0

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

3.1.15 roboglia.base.BaseReadSync

class BaseReadSync(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1,
review=1.0, group=None, registers=[], auto=True)

Bases: roboglia.base.sync.BaseSync

A SyncLoop that performs a naive read of the registers by sequentially calling the read on each of them.

It wraps the processing between buses’ can_use() and stop_using() methods and uses naked_read
instead of the read method.

atomic()
Implements the read of the registers.

This is a naive implementation that will simply loop over all devices and registers and ask them to refresh.

__init__(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Initialize self. See help(type(self)) for accurate signature.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

property devices
The devices used by the sync.

property frequency
Loop frequency.

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

3.1. base Module 43

roboglia, Release 0.1.0

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This
method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

process_registers()
Checks that the supplied registers are available in all devices.

property register_names
The register names used by the sync.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

setup()
Thread preparation before running. Subclasses should override

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

property started
Indicates if the thread was started.

stop()
Before calling the inherited method it un-flags the registers for syncing.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

44 Chapter 3. API Reference

roboglia, Release 0.1.0

3.1.16 roboglia.base.BaseWriteSync

class BaseWriteSync(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1,
review=1.0, group=None, registers=[], auto=True)

Bases: roboglia.base.sync.BaseSync

A SyncLoop that performs a naive write of the registers by sequentially calling the read on each of them.

It wraps the processing between buses’ can_use() and stop_using() methods and uses naked_write
instead of the write method.

atomic()
Implements the writing of the registers.

This is a naive implementation that will simply loop over all devices and registers and ask them to refresh.

__init__(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Initialize self. See help(type(self)) for accurate signature.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

property devices
The devices used by the sync.

property frequency
Loop frequency.

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This
method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

3.1. base Module 45

roboglia, Release 0.1.0

process_registers()
Checks that the supplied registers are available in all devices.

property register_names
The register names used by the sync.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

setup()
Thread preparation before running. Subclasses should override

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

property started
Indicates if the thread was started.

stop()
Before calling the inherited method it un-flags the registers for syncing.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

Middle

BaseRobot A complete representation of a robot.
JointManager Implements the management of the joints by alowing

multiple movement streams to submit position com-
mands to the robot.

46 Chapter 3. API Reference

roboglia, Release 0.1.0

3.1.17 roboglia.base.BaseRobot

class BaseRobot(name='ROBOT', buses={}, inits={}, devices={}, joints={}, sensors={}, groups={},
syncs={}, manager={})

Bases: object

A complete representation of a robot.

A robot has at minimum one Bus and one Device. You can create a robot programatically by calling the
constructor and providing all the parameters required or use an initialization dictionary or a YAML file. The last
option is the preferred one considering the volume of information usually needed to describe a robot.

For initializing a robot from a dictionary definition use from_dict() class method. For instantiating from a
YAML file use from_yaml() class method.

Parameters

• name (str) – the name of the robot; will default to ROBOT

• buses (dict) – a dictionary with buses definitions; the components of the buses are de-
fined by the attributes of the particular class of the bus

• inits (dict) – a dictionary of register initialization; should have the following form:

inits:
init_template_1:

register_1: value
register_2: None # this indicates 'read initialization'

init_template_2:
register_3: value
register_4: value

see also the BaseDevice where the details of the initialization process are described

• devices (dict) – a dictionary with the device definitions; the components of devices are
defined by the attributes of the particular class of device

• joints (dict) – a dictionary with the joint definitions; the components of the joints are
defined by the attributes of the particular class of joint

• sensors (dict) – a dictionary with the sensors defintion; the components of the sensor
are defined by the attributes of the particular class of sensor

• groups (dict) – a dictionary with the group definitions; the groups end up unwind in
the robot as sets (eliminates duplication) and they are defined by the following components
(keys in the dictionary defintion): devices a list of device names in no particular order,
joints a list of joint names in no particular order, sensors a list of sensors in no particu-
lar order and groups a list of sub-groups that were previously defined and will be included
in the current group. Technically it is possible to mix and match the components of a group
(for instance create groups that contain devices, sensors, and joints).

• syncs (dict) – a dictionary with sync loops definitions; the components of syncs are
defined by the attributes of the particular class of sync.

__init__(name='ROBOT', buses={}, inits={}, devices={}, joints={}, sensors={}, groups={},
syncs={}, manager={})

Initialize self. See help(type(self)) for accurate signature.

classmethod from_yaml(file_name)
Initializes the robot from a YAML file. It will attempt to read the file and parse it with yaml library
(PyYaml) and then passes it to the from_dict() class method to do further initialization.

Parameters file_name (str) – The name of the YAML file with the robot definition

3.1. base Module 47

roboglia, Release 0.1.0

Raises FileNotFoundError – in case the file is not available

property name
(read-only) The name of the robot.

property buses
(read-only) The buses of the robot as a dict.

property inits
The initialization templates defined for the robot.

property devices
(read-only) The devices of the robot as a dict.

device_by_id(dev_id)
Returns a device by it’s ID.

Parameters dev_id (int) – the ID or device to be returned

Returns the register with that ID in the device. If no register with that ID exists, returns None.

Return type BaseRegister

property joints
(read-only) The joints of the robot as a dict.

property sensors
The sensors of the robot as a dict.

property groups
(read-only) The groups of the robot as a dict.

property syncs
(read-only) The syncs of the robot as a dict.

property manager
The RobotManager of the robot.

start()
Starts the robot operation. It will:

• call the open() method on all buses except the ones that have auto set to False

• call the open() method on all devices except the ones that have auto set to False

• call the start() method on all syncs except the ones that have auto set to False

stop()
Stops the robot operation. It will:

• call the stop() method on all syncs

• call the close() method on all devices

• call the close() method on all buses

48 Chapter 3. API Reference

roboglia, Release 0.1.0

3.1.18 roboglia.base.JointManager

class JointManager(name='JointManager', frequency=100.0, joints=[], group=None, func-
tion='mean', p_function=None, v_function=None, ld_function=None, time-
out=0.5, **kwargs)

Bases: roboglia.base.thread.BaseLoop

Implements the management of the joints by alowing multiple movement streams to submit position commands
to the robot.

The JointManager inherits the constructor paramters from BaseLoop. Please refer to that class for mote
details.

In addition the class introduces the following additional paramters:

Parameters

• joints (list of :py:class:roboglia.Base.`Joint` or subclass) –
The list of joints that the manager is having under control. Alternatively you can use the
parameter group (see below)

• group (set of :py:class:roboglia.Base.`Joint` or subclass) – A
group of joints that was defined earlier with a group statement in the robot definition file.

• function (str) – The function used to produce the blended command for the joints.
If specific functions for position (p_function), velocity (v_function) or load
(ld_function) are not supplied, then this function is used. Allowed values are ‘mean’,
‘median’, ‘min’, ‘max’.

• p_function (str) – A specific function to be used for aggregating the position values.
Allowed values are ‘mean’, ‘median’, ‘min’, ‘max’.

• v_function (str) – A specific function to be used for aggregating the velocity values.
Allowed values are ‘mean’, ‘median’, ‘min’, ‘max’.

• ld_function (str) – A specific function to be used for aggregating the load values.
Allowed values are ‘mean’, ‘median’, ‘min’, ‘max’.

• timeout (float) – Is a time in seconds an accessor will wait before issuing a timeout
when trying to submit data to the manager or the manager preparing the data for the joints.

__init__(name='JointManager', frequency=100.0, joints=[], group=None, function='mean',
p_function=None, v_function=None, ld_function=None, timeout=0.5, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

property p_func
Aggregate function for positions.

property v_func
Aggregate function for positions.

property ld_func
Aggregate function for positions.

submit(stream, commands, adjustments=False)
Used by a stream of commands to notify the Joint Manager they joint commands they want.

Parameters

• stream (BaseThread or subclass) – The stream providing the data. It is used to
keep the request separate and be able to merge later.

• commands (dict) – A dictionary with the commands requests in the format:

3.1. base Module 49

roboglia, Release 0.1.0

{joint_name: (values)}

Where values is a tuple with the command for that joint. It is acceptable to send partial
commands to a joint, for instance you can send only (100,) meaning position 100 to a
JointPVL. Submitting more information to a joint will have no effect, for instance (100,
20, 40) (position, velocity, load) to a Joint will only use the position part of the request.

• adjustments (bool) – Indicates that the values are to be treated as adjustments to
the other requests instead of absolute requests. This is convenient for streams that request
postion correction like an accelerometer based balance control. Internally the JointManger
keeps the commands separate between the absolute and the adjustments ones and calcu-
lates separate averages then adjusts the absolute results with the ones from the adjustments
to produce the final numbers.

Returns True if the operation was successful. False if there was an error (most likely the lock
was not acquired). Caller needs to review this and decide if they should retry to send data.

Return type bool

stop_submit(stream, adjustments=False)
Notifies the JointManager that the stream has finished sending data and as a result the data in the
JointManager cache should be removed.

Warning: If the stream does not call this method when it finished with a routine the last submission
will remain in the cache and will continue to be averaged with the other requests, creating problems.
Don’t forget to call this method when your move finishes!

Parameters

• stream (BaseThread or subclass) – The name of the move sending the data

• adjustments (bool) – Indicates the move submitted to the adjustment stream.

Returns True if the operation was successful. False if there was an error (most likely the lock
was not acquired). Caller needs to review this and decide if they should retry to send data. In
the case of this method it is advisable to try resending the request, otherwise stale data will
stay in the cache.

Return type bool

start()
Starts the JointManager. Before calling the BaseThread.start() it activates the joints if they indicate
they have the auto flag set.

stop()
Stops the JointManager. After calling the BaseThread.stop() it deactivates the joints if they indicate
they have the auto flag set.

atomic()
This method implements the periodic task that needs to be executed. It does not need to check paused or
stopped as the run method does this already and the subclasses should make sure that the implementation
completes quickly and does not raise any exceptions.

property frequency
Loop frequency.

property name
Returns the name of the thread.

50 Chapter 3. API Reference

roboglia, Release 0.1.0

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

setup()
Thread preparation before running. Subclasses should override

property started
Indicates if the thread was started.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

Upstream

The following classes from base module are provided for helping with the synchronization of devices’ values task.

Joints

PVL A representation of a (position, value, load) command
that supports nan value components and implements
a number of help functions like addition, substraction,
negation, equality (with error margin) and representa-
tion.

PVLList A class that holds a list of PVL commands and provides
a number of extra manipulation functions.

Joint A Joint is a convenient class to represent a positional
device.

JointPV A Joint with position and velocity control.
JointPVL A Joint with position, velocity and load control.

3.1. base Module 51

roboglia, Release 0.1.0

3.1.19 roboglia.base.PVL

class PVL(p=nan, v=nan, ld=nan)
Bases: object

A representation of a (position, value, load) command that supports nan value components and implements a
number of help functions like addition, substraction, negation, equality (with error margin) and representation.

Parameters

• p (float or nan) – The position value of the PVL

• v (float or nan) – The velocity value of the PVL

• ld (float or nan) – The load value of the PVL

__init__(p=nan, v=nan, ld=nan)
Initialize self. See help(type(self)) for accurate signature.

property p
The position value in PVL.

property v
The velocity value in PVL.

property ld
The load value in PVL.

__eq__(other)
Comparison of two PVLs with margin of error.

Compare components of PVL one to one. nan are the same if both are nan. Numbers are the same if the
relative difference between them is less than 0.1% (to account for small rounding errors that might result
from conversion of values from external to internal format).

Parameters other (PVL) – The PVL to compare to

Returns

• True – if all components match (are nan in the same place) or the differences are bellow
the threshold

• False – if there are differences on any component of the PVLs.

__sub__(other)
Substracts other from a PVL (self - other).

Parameters other (PVL or float or int or list of float or int with
size 3) – You can substract from a PVL:

• another PVL

• a number (float or int)

• a list of 3 numbers (float or int)

Substracting nan with anything results in nan. Numbers are substracted normally.

Returns The result as a PVL.

Return type PVL

__add__(other)
Addition to a PVL.

52 Chapter 3. API Reference

roboglia, Release 0.1.0

Parameters other (PVL or float or int or list of float or int with
size 3) – You can add to a PVL:

• another PVL

• a number (float or int)

• a list of 3 numbers (float or int)

Adding nan with anything results in nan. Numbers are added normally.

Returns The result as a PVL.

Return type PVL

__neg__()
Returns the inverse of a PVL. nan values stay the same, floats are negated.

__repr__()
Convenience representation of a PVL.

3.1.20 roboglia.base.PVLList

class PVLList(p=[], v=[], ld=[])
Bases: object

A class that holds a list of PVL commands and provides a number of extra manipulation functions.

The constructor pads the supplied lists with nan in case the lists are unequal in size.

Parameters

• p (list of [float or nan]) – The position commands as a list of float or nan like this:

p=[1, 2, nan, 30, nan, 20, 10, nan]

• v (list of [float or nan]) – The velocity commands as a list of float or nan

• ld (list of [float or nan]) – The load commands as a list of float or nan

__init__(p=[], v=[], ld=[])
Initialize self. See help(type(self)) for accurate signature.

property items
Returns the raw items of the list.

__len__()
Returns the length of the list.

__getitem__(item)
Access an item by position.

__repr__()
Provides a representation of the PVLList for convenience. It will show a list of PVLs.

property positions
Returns the full list of positions (p) commands, including nan from the list.

property velocities
Returns the full list of velocities (v) commands, including nan from the list.

property loads
Returns the full list of load (ld) commands, including nan from the list.

3.1. base Module 53

roboglia, Release 0.1.0

append(p=nan, v=nan, ld=nan, p_list=[], v_list=[], l_list=[], pvl=None, pvl_list=[])
Appends items to the PVL List. Depending on the way you call it you can:

• append one item defined by parameters p, v and l

• append a list of items defined by paramters p_list, v_list and l_list; this works similar with
the constructor by padding the lists if they have unequal length

• append one PVL object is provided as pvl

• append a list of PVL objects provided as pvl_list

process(p_func=<function mean>, v_func=<function mean>, ld_func=<function mean>)
Performs an aggregation function on all the elements in the list by applying the provided functions to the
p, v and ld components of all the items in the list.

Parameters

• p_func (function) – An aggregation function to be used for p values in the list. De-
fault is statistics.mean.

• v_func (function) – An aggregation function to be used for v values in the list. De-
fault is statistics.mean.

• ld_func (function) – An aggregation function to be used for ld values in the list.
Default is statistics.mean.

Returns A PVL object with the aggregated result. If any of the components is missing any
values in the list it will be reflected with nan value in that position.

Return type PVL

3.1.21 roboglia.base.Joint

class Joint(name='JOINT', device=None, pos_read=None, pos_write=None, activate=None, in-
verse=False, offset=0.0, minim=None, maxim=None, auto=True, **kwargs)

Bases: object

A Joint is a convenient class to represent a positional device.

A Joint class provides an abstract access to a device providing:

• access to arbitrary registers in device to retrieve / set the position

• possibility to invert coordinates

• possibility to add an offset so that the 0 of the joint is different from the 0 of the device

• include max and min range in joint coordinates to reflect physical limitation of the joint

Parameters

• name (str) – The name of the joint

• device (BaseDevice or subclass) – The device object connected to the joint

• pos_read (str) – The register name used to retrieve current position

• pos_write (str) – The register name used to write desired position

• activate (str or None) – The register name used to control device activation. Optional.

• inverse (bool) – Indicates inverse coordinate system versus the device; default False

• offset (float) – Offset of the joint from device’s 0; default 0.0

54 Chapter 3. API Reference

roboglia, Release 0.1.0

• minim (float or None) – Introduces a minimum limit for the joint value; ignored if None
which is also the default

• maxim (float or None) – Introduces a maximum limit for the joint value; ignored if None
which is also the default

• auto (bool) – The joint should activate automatically when the robot starts; defaults to
True

__init__(name='JOINT', device=None, pos_read=None, pos_write=None, activate=None, in-
verse=False, offset=0.0, minim=None, maxim=None, auto=True, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

property name
(read-only) Joint’s name.

property device
(read-only) The device used by joint.

property position_read_register
(read-only) The register for current position.

property position_write_register
(read-only) The register for desired position.

property activate_register
(read-only) The register for activation control.

property active
(read-write) Accessor for activating the joint. If the activation registry was not specified (None) the method
will return True (assumes the joints are active by default if not controllable.

The setter will log a warning if you try to assign a value to this property if there is no register assigned to
it.

Returns Value of the activate register or True if no register was specified when the joint was
created.

Return type bool

property auto_activate
Indicates if the joint should automatically be activated when the robot starts.

property inverse
(read-only) Joint uses inverse coordinates versus the device.

property offset
(read-only) The offset between joint coords and device coords.

property range
(read-only) Tuple (min, max) of joint limits.

Returns A tuple with the min and max limits for the joints. None indicates that the joint does
not have a particular limit set.

Return type (min, max)

property position
Getter uses the read register and applies inverse and offset transformations, setter clips to (min, max) limit
if set, applies offset and inverse and writes to the write register.

property desired_position
(read-only) Retrieves the desired position from the write register.

3.1. base Module 55

roboglia, Release 0.1.0

property value
Generic accessor / setter that uses tuples to interact with the joint. For position only joints only position is
set.

property desired
Generic accessor for desired joint values. Always a tuple. For position only joints only position attribute
is used.

__repr__()
Return repr(self).

3.1.22 roboglia.base.JointPV

class JointPV(vel_read=None, vel_write=None, **kwargs)
Bases: roboglia.base.joint.Joint

A Joint with position and velocity control.

It inherits all the paramters from Joint and adds the following additional ones:

Parameters

• vel_read (str) – The register name used to retrieve current velocity

• vel_write (str) – The register name used to write desired velocity

__init__(vel_read=None, vel_write=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property velocity
Getter uses the read register and applies inverse transformation, setter uses absolute values and writes to
the write register.

property velocity_read_register
(read-only) The register for current velocity.

property velocity_write_register
(read-only) The register for desired velocity.

property desired_velocity
(read-only) Retrieves the desired velocity from the write register.

property value
For a PV joint the value is a tuple with only 2 values used: (position, velocity).

property desired
For PV joint the desired is a tuple with only 2 values used.

__repr__()
Return repr(self).

property activate_register
(read-only) The register for activation control.

property active
(read-write) Accessor for activating the joint. If the activation registry was not specified (None) the method
will return True (assumes the joints are active by default if not controllable.

The setter will log a warning if you try to assign a value to this property if there is no register assigned to
it.

Returns Value of the activate register or True if no register was specified when the joint was
created.

56 Chapter 3. API Reference

roboglia, Release 0.1.0

Return type bool

property auto_activate
Indicates if the joint should automatically be activated when the robot starts.

property desired_position
(read-only) Retrieves the desired position from the write register.

property device
(read-only) The device used by joint.

property inverse
(read-only) Joint uses inverse coordinates versus the device.

property name
(read-only) Joint’s name.

property offset
(read-only) The offset between joint coords and device coords.

property position
Getter uses the read register and applies inverse and offset transformations, setter clips to (min, max) limit
if set, applies offset and inverse and writes to the write register.

property position_read_register
(read-only) The register for current position.

property position_write_register
(read-only) The register for desired position.

property range
(read-only) Tuple (min, max) of joint limits.

Returns A tuple with the min and max limits for the joints. None indicates that the joint does
not have a particular limit set.

Return type (min, max)

3.1.23 roboglia.base.JointPVL

class JointPVL(load_read=None, load_write=None, **kwargs)
Bases: roboglia.base.joint.JointPV

A Joint with position, velocity and load control.

It inherits all the paramters from JointPV and adds the following additional ones:

Parameters

• load_read (str) – The register name used to retrieve current load

• load_write (str) – The register name used to write desired load

__init__(load_read=None, load_write=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property activate_register
(read-only) The register for activation control.

property active
(read-write) Accessor for activating the joint. If the activation registry was not specified (None) the method
will return True (assumes the joints are active by default if not controllable.

3.1. base Module 57

roboglia, Release 0.1.0

The setter will log a warning if you try to assign a value to this property if there is no register assigned to
it.

Returns Value of the activate register or True if no register was specified when the joint was
created.

Return type bool

property auto_activate
Indicates if the joint should automatically be activated when the robot starts.

property desired_position
(read-only) Retrieves the desired position from the write register.

property desired_velocity
(read-only) Retrieves the desired velocity from the write register.

property device
(read-only) The device used by joint.

property inverse
(read-only) Joint uses inverse coordinates versus the device.

property load
Getter uses the read register and applies inverse transformation, setter uses absolute values and writes to
the write register.

property name
(read-only) Joint’s name.

property offset
(read-only) The offset between joint coords and device coords.

property position
Getter uses the read register and applies inverse and offset transformations, setter clips to (min, max) limit
if set, applies offset and inverse and writes to the write register.

property position_read_register
(read-only) The register for current position.

property position_write_register
(read-only) The register for desired position.

property range
(read-only) Tuple (min, max) of joint limits.

Returns A tuple with the min and max limits for the joints. None indicates that the joint does
not have a particular limit set.

Return type (min, max)

property velocity
Getter uses the read register and applies inverse transformation, setter uses absolute values and writes to
the write register.

property velocity_read_register
(read-only) The register for current velocity.

property velocity_write_register
(read-only) The register for desired velocity.

property load_read_register
(read-only) The register for current load.

58 Chapter 3. API Reference

roboglia, Release 0.1.0

property load_write_register
(read-only) The register for desired velocity.

property desired_load
(read-only) Retrieves the desired velocity from the write register.

property value
For a PVL joint the value is a tuple of 3 values (position, velocity, load)

property desired
For PV joint the desired is a tuple with all 3 values used.

__repr__()
Return repr(self).

Sensors

Sensor A one-value sensor.
SensorXYZ An XYZ sensor.

3.1.24 roboglia.base.Sensor

class Sensor(name='SENSOR', device=None, value_read=None, activate=None, inverse=False, off-
set=0.0, auto=True, **kwargs)

Bases: object

A one-value sensor.

A sensor is associated with a device and has at least a connection to a register in that device that represents the
value the sensor is representing. In addition a sensor can have an optional register used to activate or deactivate
the device and can publish a value that can be either boolean if the bits parameter is used or float, in which
case the sensor can also apply an inverse and and offset to the values read from the device registry.

Parameters

• name (str) – The name of the sensor

• device (BaseDevice or subclass) – The device associated with the sensor

• value_read (str) – The name of the register in device used to retrieve the sensor’s value

• activate (str or None) – The name of the register used to activate the device. If
None is used no activation for the device can be done and the sensor is by default assumed
to be activated.

• inverse (bool) – Indicates if the value read from the register should be inverted before
being presented to the user in the value(). The inverse operation is performed before the
offset (see below). Default is False. It is ignored if bits property is used.

• offset (float) – Indicates an offest to be adder to the value read from the register (after
inverse if True). Default is 0.0. It is ignored if bits property is used.

• auto (bool) – Indicates if the sensor should be automatically activated when the robot is
started (:py:meth:roboglia.base.BaseRobot.`start` method). Default is True.

__init__(name='SENSOR', device=None, value_read=None, activate=None, inverse=False, off-
set=0.0, auto=True, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

property name
The name of the sensor.

3.1. base Module 59

roboglia, Release 0.1.0

property device
The devices associated with the sensor.

property read_register
The register used to access the sensor value.

property activate_register
(read-only) The register for activation sensor.

property active
(read-write) Accessor for activating the senser. If the activation registry was not specified (None) the
method will return True (assumes the sensors are active by default if not controllable.

The setter will log a warning if you try to assign a value to this property if there is no register assigned to
it.

Returns Value of the activate register or True if no register was specified when the sensor was
created.

Return type bool

property auto_activate
Indicates if the joint should automatically be activated when the robot starts.

property inverse
(read-only) sensor uses inverse coordinates versus the device.

property offset
(read-only) The offset between sensor coords and device coords.

property value
Returns the value of the sensor.

Returns The value of the register is adjusted with the offset and the inverse attributes.

Return type bool or float

3.1.25 roboglia.base.SensorXYZ

class SensorXYZ(name='SENSOR-XYZ', device=None, x_read=None, x_inverse=False, x_offset=0.0,
y_read=None, y_inverse=False, y_offset=0.0, z_read=None, z_inverse=False,
z_offset=0.0, activate=None, auto=True, **kwargs)

Bases: object

An XYZ sensor.

A sensor is associated with a device and has connections to 3 registers in that device that represents the X, Y
and Z values the sensor is representing. In addition a sensor can have an optional register used to activate or
deactivate the device and can publish X, Y and Z values that are floats where the sensor applies an inverse
and and offset to the values read from the device registry.

Parameters

• name (str) – The name of the sensor

• device (BaseDevice or subclass) – The device associated with the sensor

• x_read (str) – The name of the register in device used to retrieve the sensor’s value for x

• x_inverse (bool) – Indicates if the value read from the x register should be inverted
before being presented to the user in the x(). The inverse operation is performed before
the x_offset (see below). Default is False.

60 Chapter 3. API Reference

roboglia, Release 0.1.0

• x_offset (float) – Indicates an offest to be adder to the value read from the register x
(after x_inverse if True). Default is 0.0.

• y_read (str) – The name of the register in device used to retrieve the sensor’s value for y

• y_inverse (bool) – Indicates if the value read from the y register should be inverted
before being presented to the user in the y(). The inverse operation is performed before
the y_offset (see below). Default is False.

• y_offset (float) – Indicates an offest to be adder to the value read from the register y
(after y_inverse if True). Default is 0.0.

• z_read (str) – The name of the register in device used to retrieve the sensor’s value for z

• z_inverse (bool) – Indicates if the value read from the x register should be inverted
before being presented to the user in the z(). The inverse operation is performed before
the z_offset (see below). Default is False.

• z_offset (float) – Indicates an offest to be adder to the value read from the register z
(after z_inverse if True). Default is 0.0.

• activate (str or None) – The name of the register used to activate the device. If
None is used no activation for the device can be done and the sensor is by default assumed
to be activated.

• auto (bool) – Indicates if the sensor should be automatically activated when the robot is
started (:py:meth:roboglia.base.BaseRobot.`start` method). Default is True.

__init__(name='SENSOR-XYZ', device=None, x_read=None, x_inverse=False, x_offset=0.0,
y_read=None, y_inverse=False, y_offset=0.0, z_read=None, z_inverse=False, z_offset=0.0,
activate=None, auto=True, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

property name
The name of the sensor.

property device
The devices associated with the sensor.

property x_register
The register used to access the sensor X value.

property x_inverse
(read-only) Sensor uses inverse coordinates versus the device for X value.

property x_offset
(read-only) The offset between sensor coords and device coords for X value.

property y_register
The register used to access the sensor Y value.

property y_inverse
(read-only) Sensor uses inverse coordinates versus the device for Y value.

property y_offset
(read-only) The offset between sensor coords and device coords for Y value.

property z_register
The register used to access the sensor Z value.

property z_inverse
(read-only) Sensor uses inverse coordinates versus the device for Z value.

3.1. base Module 61

roboglia, Release 0.1.0

property z_offset
(read-only) The offset between sensor coords and device coords for Z value.

property activate_register
(read-only) The register for activation sensor.

property active
(read-write) Accessor for activating the senser. If the activation registry was not specified (None) the
method will return True (assumes the sensors are active by default if not controllable.

The setter will log a warning if you try to assign a value to this property if there is no register assigned to
it.

Returns Value of the activate register or True if no register was specified when the sensor was
created.

Return type bool

property auto_activate
Indicates if the joint should automatically be activated when the robot starts.

property x
Returns the processed X value of register.

property y
Returns the processed Y value of register.

property z
Returns the processed Z value of register.

property value
Returns the value of the sensor as a tuple (X, Y, Z).

3.2 dynamixel Module

This module contains classes that are specific for interaction with dynamixel devices.

Buses

DynamixelBus A communication bus that supports Dynamixel proto-
col.

SharedDynamixelBus A DynamixelBus that can be used in multithreaded en-
vironment.

MockPacketHandler A class used to simulate the Dynamixel communication
without actually using a real bus or devices.

3.2.1 roboglia.dynamixel.DynamixelBus

class DynamixelBus(baudrate=1000000, protocol=2.0, rs485=False, mock=False, **kwargs)
Bases: roboglia.base.bus.BaseBus

A communication bus that supports Dynamixel protocol.

Uses dynamixel_sdk.

Note: The parameters listed bellow are only the specific ones introduced by the DynamixelBus class.
Since this is a subclass of BaseBus and the constructor will call the super() constructor, all the paramters

62 Chapter 3. API Reference

roboglia, Release 0.1.0

supported by BaseBus are also supported and checked when creating a DynamixelBus. For instance the
name, robot and port are validated.

Parameters

• baudrate (int) – Communication speed for the bus

• protocol (float) – Communication protocol for the bus; must be 1.0 or 2.0

• rs485 (bool) – If True, DynamixelBus will configure the serial port with RS485
support. This might be required for certain interfaces that need this mode in order to control
the semi-duplex protocol (one wire) implemented by Dynamixel devices or if you genuinely
use RS485 Dynamixel devices.

• mock (bool) – Indicates to use mock bus for testing purposes; this will make use of the
MockPacketHandler to simulate the communication on a Dynamixel bus and allow to
test the software in CI testing.

Raises

• KeyError – if any of the required keys are missing:

• ValueError – if any of the required data is incorrect:

__init__(baudrate=1000000, protocol=2.0, rs485=False, mock=False, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property port_handler
The Dynamixel port handler for this bus.

property packet_handler
The Dynamixel packet handler for this bus.

property protocol
Protocol supported by the bus.

property baudrate
Bus baudrate.

property rs485
If the bus uses rs485.

open()
Allocates the port_handler and the packet_handler. If the attribute mock was True when setting up the
bus, then uses MockPacketHandler.

close()
Closes the actual physical bus. Calls the super().close() to check if there is ok to close the bus and
no other objects are using it.

property is_open
Returns True or False if the bus is open.

ping(dxl_id)
Performs a Dynamixel ping of a device.

Parameters dxl_id (int) – The Dynamixel device number to be pinged.

Returns True if the device responded, False otherwise.

Return type bool

3.2. dynamixel Module 63

roboglia, Release 0.1.0

scan(range=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,
218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253])

Scans the devices on the bus.

Parameters

• range (range) – the range of devices to be cheked if they exist on the bus. The method
will call ping() for each ID in the list. By default the list is [0, 253].

• Returns –

• of int (list) – The list of IDs that have been successfully identified on the bus. If
none is found the list will be empty.

read(reg)
Depending on the size of the register calls the corresponding TxRx function from the packet handler. If
the result is ok (communication error and dynamixel error are both 0) then the obtained value is returned.
Communication and data errors are logged and no exceptions are raised.

Parameters reg (BaseRegister or subclass) – The register to be read

Returns The value read by calling the device.

Return type int

write(reg, value)
Depending on the size of the register calls the corresponding TxRx function from the packet handler.
Communication and data errors are logged and no exceptions are raised.

Parameters

• reg (BaseRegister or subclass) – The register to write to

• value (int) – The value to write to the register. Please note that this is in the internal
format of the register and it is the responsibility of the register class to provide conversion
between the internal and external format if they are different.

__repr__()
Returrns a representation of a BaseBus that includes the name of the class, the port and the status (open or
closed).

property auto_open
Indicates if the bus should be opened by the robot when initializing.

property name
(read-only) the bus name.

property port
(read-only) the bus port.

property robot
The robot that owns the bus.

64 Chapter 3. API Reference

roboglia, Release 0.1.0

3.2.2 roboglia.dynamixel.SharedDynamixelBus

class SharedDynamixelBus(**kwargs)
Bases: roboglia.base.bus.SharedBus

A DynamixelBus that can be used in multithreaded environment.

Includes the functionality of a DynamixelBus in a SharedBus. The write() and read() methods are
wrapped around in can_use() and stop_using() to provide the exclusive access.

In addition, two methods naked_write() and naked_read() are provided so that classes that want se-
quence of read / writes can do that more efficiently without accessing the lock every time. They simply invoke the
unsafe methods :py:meth:DynamixelBus.`write` and :py:meth:DynamixelBus.`read` from the DynamixelBus
class.

Warning: If you are using naked_write() and naked_read() you must ensure that you wrap them
in can_use() and stop_using() in the calling code.

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

__getattr__(name)
Forwards all unanswered calls to the main bus instance.

__repr__()
Invokes the main bus representation but changes the class name with the “Shared” class name to show a
more accurate picture of the object.

can_use()
Tries to acquire the resource on behalf of the caller.

This method should be called every time a user of the bus wants to perform an operation. If the result is
False the user does not have exclusive use of the bus and the actions are not guaranteed.

Warning: It is the responsibility of the user to call stop_using() as soon as possible after pre-
forming the intended work with the bus if this method grants it access. Failing to do so will result in
the bus being blocked by this user and prohibiting other users to access it.

Returns True if managed to acquire the resource, False if not. It is the responsibility of the
caller to decide what to do in case there is a False return including logging or Raising.

Return type bool

naked_read(reg)
Calls the main bus read without invoking the lock. This is intended for those users that plan to use a series
of read operations and they do not want to lock and release the bus every time, as this adds some overhead.
Since the original bus’ read method is overridden (see below), any calls to read from a user will result
in using the wrapped version defined in this class. Therefore in the scenario that the user wants to execute
a series of quick reads the naked_read can be used as long as the user wraps the calls correctly for
obtaining exclusive access:

if bus.can_use():
val1 = bus.naked_read(reg1)
val2 = bus.naked_read(reg2)
val3 = bus.naked_read(reg3)

(continues on next page)

3.2. dynamixel Module 65

roboglia, Release 0.1.0

(continued from previous page)

...
bus.stop_using()

else:
logger.warning('some warning')

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns Typically it would return an int that will have to be handled by the caller.

Return type int

naked_write(reg, value)
Calls the main bus write without invoking the lock. This is intended for those users that plan to use a
series of write operations and they do not want to lock and release the bus every time, as this adds some
overhead. Since the original bus’ write method is overridden (see below), any calls to write from a
user will result in using the wrapped version defined in this class. Therefore in the scenario that the user
wants to execute a series of quick writes the naked_write can be used as long as the user wraps the
calls correctly for obtaining exclusive access:

if bus.can_use():
val1 = bus.naked_write(reg1, val1)
val2 = bus.naked_write(reg2, val2)
val3 = bus.naked_write(reg3, val3)
...
bus.stop_using()

else:
logger.warning('some warning')

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be read.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it to the caller.

• value (int) – The value needed to the written to the device.

read(reg)
Overrides the main bus’ read() method and performs a safe read by wrapping the read call in a request
to acquire the bus.

If the method is not able to acquire the bus in time (times out) it will log an error and return None.

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns The value read for this register or None is the call failed to secure with bus within the
timeout.

Return type int

66 Chapter 3. API Reference

roboglia, Release 0.1.0

stop_using()
Releases the resource.

property timeout
Returns the timeout for requesting access to lock.

write(reg, value)
Overrides the main bus’ ~roboglia.base.BaseBus.write method and performs a safe write by wrapping the
main bus write call in a request to acquire the bus.

If the method is not able to acquire the bus in time (times out) it will log an error.

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be read.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it to the caller.

• value (int) – The value to be written to the device.

3.2.3 roboglia.dynamixel.MockPacketHandler

class MockPacketHandler(protocol, robot, err=0.1)
Bases: object

A class used to simulate the Dynamixel communication without actually using a real bus or devices. Used for
testing in the CI environment. The class includes deterministic behavior, for instance it will use the existing
values of the device to mock a response, as well as well as stochastic behavior where with a certain probability
we generate communication errors in order to be able to test how the code deals with these situations. Also, for
read of registers that are read only the class will introduce small random numbers to the numbers already in the
registers so to simulate values that change over time (ex. current position).

Parameters

• protocol (float) – Dynamixel protocol to use. Should be 1.0 or 2.0

• robot (BaseRobot) – The robot for in order to bootstrap information.

• err (float) – A value that is used to generate random communication errors so that we
can test the parts of the code that deal with this.

__init__(protocol, robot, err=0.1)
Initialize self. See help(type(self)) for accurate signature.

getProtocolVersion()
Returns the Dynamixel protocol used.

getTxRxResult(err)
Used to get a string representation of a communication error. Invokes the official function from
PacketHandler in dynamixel_sdk.

Parameters err (int) – An error code as reported by the communication medium

Returns A string representation of this error.

Return type str

getRxPacketError(err)
Used to get a string representation of a device response error. Invokes the official function from
PacketHandler in dynamixel_sdk.

Parameters err (int) – An error code as reported by the Dynamixel device

3.2. dynamixel Module 67

roboglia, Release 0.1.0

Returns A string representation of this error.

Return type str

write1ByteTxRx(ph, dev_id, address, value)
Mocks a write of 1 byte to a device. In err percentage time it will raise a communication error. From the
remaning cases again an err percentage will be raised with device error (overheat).

The paramters are copied from the PacketHadler in dynamixel_sdk.

You would rarely need to use this.

write2ByteTxRx(ph, dev_id, address, value)
Same as write1ByteTxRx() but for 2 Bytes registers.

write4ByteTxRx(ph, dev_id, address, value)
Same as write1ByteTxRx() but for 4 Bytes registers.

read1ByteTxRx(ph, dev_id, address)
Same as write1ByteTxRx() but for reading 1 Bytes registers.

read2ByteTxRx(ph, dev_id, address)
Same as write1ByteTxRx() but for reading 2 Bytes registers.

read4ByteTxRx(ph, dev_id, address)
Same as write1ByteTxRx() but for reading 4 Bytes registers.

syncWriteTxOnly(port, start_address, data_length, param, param_length)
Mocks a SyncWrite transmit package. We return randomly an error or success.

syncReadTx(port, start_address, data_length, param, param_length)
Mocks a SyncWrite transmit package. We return randomly an error or success.

readRx(port, dxl_id, length)
Mocks a read package received. Used by SyncRead and BulkRead. It will attempt to produce a response
based on the data already exiting in the registers. If the register is a read-only one, we will add a random
value between (-10, 10) to the exiting value and then trim it to the min and max limits of the register.
When passing back the data, for registers that are more than 1 byte a low endian conversion is executed
(see DynamixelRegister.register_low_endian()).

readTxRx(port, dxl_id, address, length)
Mocks a read package received. Used by RangeRead. It will attempt to produce a response based on
the data already exiting in the registers. If the register is a read-only one, we will add a random value
between (-10, 10) to the exiting value and then trim it to the min and max limits of the register. When
passing back the data, for registers that are more than 1 byte a low endian conversion is executed (see
DynamixelRegister.register_low_endian()).

bulkWriteTxOnly(port, param, param_length)
Simulate a BulkWrite transmit package. We return randomly an error or success.

bulkReadTx(port, param, param_length)
“Simulate a BulkWrite transmit of response request package. We return randomly an error or success.

ping(ph, dxl_id)
Simulates a ping on the Dynamixel bus.

Devices

DynamixelDevice Implements specific functionality for Dynamixel de-
vices.

68 Chapter 3. API Reference

roboglia, Release 0.1.0

3.2.4 roboglia.dynamixel.DynamixelDevice

class DynamixelDevice(**kwargs)
Bases: roboglia.base.device.BaseDevice

Implements specific functionality for Dynamixel devices.

Differences are:

• different version of get_model_path() that will point to the local device directory in the
dynamixel module

• the initialization parameters are the same as for the class BaseDevice

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

get_model_path()
Builds the path to the .yml documents.

Returns

A full document path including the name of the model and the extension .yml.

Return type str

register_low_endian(value, size)
Converts a value into a list of bytes in little endian order.

Parameters

• value (int) – the value of the register

• size (int) – the size of the register

Returns

(list) List of bytes of len size with bytes ordered lowest first.

__str__()
Return str(self).

property bus
The bus where the device is connected to.

Returns The bus object using this device.

Return type BaseBus or SharedBus or subclass

close()
Perform device closure. BaseDevice implementation does nothing.

default_register()
Default register for the device in case is not explicitly provided in the device definition file.

Subclasses of BaseDevice can overide the method to derive their own class.

BaseDevice suggests as default register BaseRegister.

property dev_id
The device number.

Returns The device number

Return type int

3.2. dynamixel Module 69

roboglia, Release 0.1.0

property name
Device name.

Returns The name of the device

Return type str

open()
Performs initialization of the device by reading all registers that are not flagged for sync replication and,
if init parameter provided initializes the indicated registers with the values from the init paramters.

read_register(register)
Implements the read of a register using the associated bus. More complex devices should overwrite the
method to provide specific functionality.

BaseDevice simply calls the bus’s read function and returns the value received.

register_by_address(address)
Returns the register identified by the given address. If the address is not available in the device it will
return None.

Returns The device at address or None if no register with that address exits.

Return type BaseDevice or subclass or None

property registers
Device registers as dict.

Returns The dictionary of registers with the register name as key.

Return type dict

write_register(register, value)
Implements the write of a register using the associated bus. More complex devices should overwrite the
method to provide specific functionality.

BaseDevice simply calls the bus’s write function and returns the value received.

Syncs

DynamixelSyncReadLoop Implements SyncRead as specified in the frequency pa-
rameter.

DynamixelSyncWriteLoop Implements SyncWrite as specified in the frequency pa-
rameter.

DynamixelBulkReadLoop Implements BulkRead as specified in the frequency pa-
rameter.

DynamixelBulkWriteLoop Implements BulkWrite as specified in the frequency pa-
rameter.

3.2.5 roboglia.dynamixel.DynamixelSyncReadLoop

class DynamixelSyncReadLoop(**kwargs)
Bases: roboglia.base.sync.BaseSync

Implements SyncRead as specified in the frequency parameter.

The devices are provided in the group parameter and the registers in the registers as a list of register names. It
will update the int_value of each register in every device with the result of the call. Will raise exceptions if the
SyncRead cannot be setup or fails to execute. Only works with Protocol 2.0.

70 Chapter 3. API Reference

roboglia, Release 0.1.0

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

setup()
Prepares to start the loop.

atomic()
Executes a SyncRead.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

property devices
The devices used by the sync.

property frequency
Loop frequency.

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This
method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

process_registers()
Checks that the supplied registers are available in all devices.

property register_names
The register names used by the sync.

resume()
Requests the thread to resume.

3.2. dynamixel Module 71

roboglia, Release 0.1.0

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

property started
Indicates if the thread was started.

stop()
Before calling the inherited method it un-flags the registers for syncing.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

3.2.6 roboglia.dynamixel.DynamixelSyncWriteLoop

class DynamixelSyncWriteLoop(name='BASESYNC', patience=1.0, frequency=None, warning=0.9,
throttle=0.1, review=1.0, group=None, registers=[], auto=True)

Bases: roboglia.base.sync.BaseSync

Implements SyncWrite as specified in the frequency parameter.

The devices are provided in the group parameter and the registers in the registers as a list of register names. It
will update from int_value of each register for every device. Will raise exceptions if the SyncWrite cannot be
setup or fails to execute.

setup()
This allocates the GroupSyncWrite. It needs to be here and not in the constructor as this is part of the
wrapped execution that is produced by BaseThread class.

atomic()
Executes a SyncWrite.

__init__(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Initialize self. See help(type(self)) for accurate signature.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

72 Chapter 3. API Reference

roboglia, Release 0.1.0

property devices
The devices used by the sync.

property frequency
Loop frequency.

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This
method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

process_registers()
Checks that the supplied registers are available in all devices.

property register_names
The register names used by the sync.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

property started
Indicates if the thread was started.

3.2. dynamixel Module 73

roboglia, Release 0.1.0

stop()
Before calling the inherited method it un-flags the registers for syncing.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

3.2.7 roboglia.dynamixel.DynamixelBulkReadLoop

class DynamixelBulkReadLoop(name='BASESYNC', patience=1.0, frequency=None, warning=0.9,
throttle=0.1, review=1.0, group=None, registers=[], auto=True)

Bases: roboglia.base.sync.BaseSync

Implements BulkRead as specified in the frequency parameter.

The devices are provided in the group parameter and the registers in the registers as a list of register names. The
registers do not need to be sequential. It will update the int_value of each register in every device with the result
of the call. Will raise exceptions if the BulkRead cannot be setup or fails to execute. With Protocol 1.0 officially
works only with MX devices.

setup()
Prepares to start the loop.

atomic()
Executes a BulkRead.

__init__(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Initialize self. See help(type(self)) for accurate signature.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

property devices
The devices used by the sync.

property frequency
Loop frequency.

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

74 Chapter 3. API Reference

roboglia, Release 0.1.0

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This
method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

process_registers()
Checks that the supplied registers are available in all devices.

property register_names
The register names used by the sync.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

property started
Indicates if the thread was started.

stop()
Before calling the inherited method it un-flags the registers for syncing.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

3.2. dynamixel Module 75

roboglia, Release 0.1.0

3.2.8 roboglia.dynamixel.DynamixelBulkWriteLoop

class DynamixelBulkWriteLoop(**kwargs)
Bases: roboglia.base.sync.BaseSync

Implements BulkWrite as specified in the frequency parameter.

The devices are provided in the group parameter and the registers in the registers as a list of register names. The
registers do not need to be sequential. It will update from int_value of each register for every device. Will raise
exceptions if the BulkWrite cannot be setup or fails to execute. Only works with Protocol 2.0.

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

setup()
This allocates the GroupBulkWrite. It needs to be here and not in the constructor as this is part of the
wrapped execution that is produced by BaseThread class.

atomic()
Executes a BulkWrite.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

property devices
The devices used by the sync.

property frequency
Loop frequency.

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This
method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

76 Chapter 3. API Reference

roboglia, Release 0.1.0

process_registers()
Checks that the supplied registers are available in all devices.

property register_names
The register names used by the sync.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

property started
Indicates if the thread was started.

stop()
Before calling the inherited method it un-flags the registers for syncing.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

3.3 i2c Module

This module contains classes that are specific for interaction with I2C devices.

Buses

I2CBus Implements a communication bus for I2C devices.
SharedI2CBus An I2C bus that can be shared between threads in a

multi-threaded environment.
MockSMBus Class for testing.

3.3. i2c Module 77

roboglia, Release 0.1.0

3.3.1 roboglia.i2c.I2CBus

class I2CBus(mock=False, err=0.1, **kwargs)
Bases: roboglia.base.bus.BaseBus

Implements a communication bus for I2C devices.

I2CBus has the same paramters as BaseBus. Please refer to this class for the details of the parameters.

In addition there is an extra parameter mock.

At this moment the I2CBus supports devices with byte and word registers and permits defining composed
regsiters with size > 1 that are treated as a single register.

Note: A gyroscope sensor might have registers for the z, y and z axes reading that are stored as pairs of registers
like this:

gyro_x_l #0x28
gyro_x_h #0x29
gyro_y_l #0x2A
gyro_y_h #0x2B
gyro_z_l #0x2C
gyro_z_h #0x2D

For simplicity it is possible to define these registers like this in the device template:

registers:
gyro_x:

address: 0x28
size: 2

gyro_y:
address: 0x2A
size: 2

gyro_z:
address: 0x2C
size: 2

By default the registers are Byte and the order of data is low-high as described in the
:py:class:roboglia.base.`BaseRegister`. The bus will handle this by reading the two registers sequentially and
computing the register’s value using the size of the register and the order.

Parameters mock (bool) – Indicates if the I2C bus will use mock communication. It is provided
for testing of functionality in CI environment. If True the bus will use the MockSMBus class
for performing read and write operations.

__init__(mock=False, err=0.1, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

open()
Opens the communication port.

close()
Closes the communication port, if the super().close() allows it. If the bus is used in any sync loops,
the close request might fail.

property is_open
Returns True or False if the bus is open.

78 Chapter 3. API Reference

roboglia, Release 0.1.0

read(reg)
Depending on the size of the register is calls the corresponding function from the SMBus.

write(reg, value)
Depending on the size of the register it calls the corresponding write function from SMBus.

read_block(device, start_address, length)
Reads a block of registers of given length.

Parameters

• device (I2CDevice or subclass) – The device on the I2C bus

• start_addr (int) – The start address to read from

• length (int) – Number of bytes to read from the device

Returns A list of bytes of length length with the values from the device. It intercepts any
exceptions and logs them, in that case the return will be None.

Return type list of int

write_block(device, start_address, data)
Writes a block of registers of given length.

Parameters

• device (I2CDevice or subclass) – The device on the I2C bus

• start_addr (int) – The start address to read from

• data (list of int) – The bytes to write to the device

Returns It intercepts any exceptions and logs them.

Return type None

__repr__()
Returrns a representation of a BaseBus that includes the name of the class, the port and the status (open or
closed).

property auto_open
Indicates if the bus should be opened by the robot when initializing.

property name
(read-only) the bus name.

property port
(read-only) the bus port.

property robot
The robot that owns the bus.

3.3.2 roboglia.i2c.SharedI2CBus

class SharedI2CBus(**kwargs)
Bases: roboglia.base.bus.SharedBus

An I2C bus that can be shared between threads in a multi-threaded environment.

It inherits all the initialization paramters from SharedBus and I2CBus.

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

3.3. i2c Module 79

roboglia, Release 0.1.0

__getattr__(name)
Forwards all unanswered calls to the main bus instance.

__repr__()
Invokes the main bus representation but changes the class name with the “Shared” class name to show a
more accurate picture of the object.

can_use()
Tries to acquire the resource on behalf of the caller.

This method should be called every time a user of the bus wants to perform an operation. If the result is
False the user does not have exclusive use of the bus and the actions are not guaranteed.

Warning: It is the responsibility of the user to call stop_using() as soon as possible after pre-
forming the intended work with the bus if this method grants it access. Failing to do so will result in
the bus being blocked by this user and prohibiting other users to access it.

Returns True if managed to acquire the resource, False if not. It is the responsibility of the
caller to decide what to do in case there is a False return including logging or Raising.

Return type bool

naked_read(reg)
Calls the main bus read without invoking the lock. This is intended for those users that plan to use a series
of read operations and they do not want to lock and release the bus every time, as this adds some overhead.
Since the original bus’ read method is overridden (see below), any calls to read from a user will result
in using the wrapped version defined in this class. Therefore in the scenario that the user wants to execute
a series of quick reads the naked_read can be used as long as the user wraps the calls correctly for
obtaining exclusive access:

if bus.can_use():
val1 = bus.naked_read(reg1)
val2 = bus.naked_read(reg2)
val3 = bus.naked_read(reg3)
...
bus.stop_using()

else:
logger.warning('some warning')

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns Typically it would return an int that will have to be handled by the caller.

Return type int

naked_write(reg, value)
Calls the main bus write without invoking the lock. This is intended for those users that plan to use a
series of write operations and they do not want to lock and release the bus every time, as this adds some
overhead. Since the original bus’ write method is overridden (see below), any calls to write from a
user will result in using the wrapped version defined in this class. Therefore in the scenario that the user
wants to execute a series of quick writes the naked_write can be used as long as the user wraps the
calls correctly for obtaining exclusive access:

80 Chapter 3. API Reference

roboglia, Release 0.1.0

if bus.can_use():
val1 = bus.naked_write(reg1, val1)
val2 = bus.naked_write(reg2, val2)
val3 = bus.naked_write(reg3, val3)
...
bus.stop_using()

else:
logger.warning('some warning')

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be read.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it to the caller.

• value (int) – The value needed to the written to the device.

read(reg)
Overrides the main bus’ read() method and performs a safe read by wrapping the read call in a request
to acquire the bus.

If the method is not able to acquire the bus in time (times out) it will log an error and return None.

Parameters reg (BaseRegister or subclass) – The register object that needs to be
read. Keep in mind that the register object also contains a reference to the device in the
device attribute and it is up to the subclass to determine the way the information must be
processed before providing it to the caller.

Returns The value read for this register or None is the call failed to secure with bus within the
timeout.

Return type int

stop_using()
Releases the resource.

property timeout
Returns the timeout for requesting access to lock.

write(reg, value)
Overrides the main bus’ ~roboglia.base.BaseBus.write method and performs a safe write by wrapping the
main bus write call in a request to acquire the bus.

If the method is not able to acquire the bus in time (times out) it will log an error.

Parameters

• reg (BaseRegister or subclass) – The register object that needs to be read.
Keep in mind that the register object also contains a reference to the device in the device
attribute and it is up to the subclass to determine the way the information must be processed
before providing it to the caller.

• value (int) – The value to be written to the device.

3.3. i2c Module 81

roboglia, Release 0.1.0

3.3.3 roboglia.i2c.MockSMBus

class MockSMBus(robot, err=0.1)
Bases: smbus2.smbus2.SMBus

Class for testing. Overides the SMBus methods in order to simulate the data exchange. Intended for use in the
CI testing.

Parameters

• robot (BaseRobot) – The robot (we need it to access the registers)

• err (float) – A small number that will be used for generating random communication
errors so that we can perform testing of the code handling those.

__init__(robot, err=0.1)
Initialize and (optionally) open an i2c bus connection.

Parameters

• bus (int or str) – i2c bus number (e.g. 0 or 1) or an absolute file path (e.g. /dev/i2c-
42). If not given, a subsequent call to open() is required.

• force (boolean) – force using the slave address even when driver is already using it.

open(port)
mock opens the bus.

close()
Mock closes the bus. It raises a OSError at the end so that the code can be checked for this behavior too.

read_byte_data(dev_id, address)
Simulates the read of 1 Byte.

read_word_data(dev_id, address)
Simulates the read of 1 Word.

write_byte_data(dev_id, address, value)
Simulates the write of one byte.

write_word_data(dev_id, address, value)
Simulates the write of one word.

read_i2c_block_data(dev_id, address, length, force=None)
Simulates the read of one block of data.

__enter__()
Enter handler.

__exit__(exc_type, exc_val, exc_tb)
Exit handler.

block_process_call(i2c_addr, register, data, force=None)
Executes a SMBus Block Process Call, sending a variable-size data block and receiving another variable-
size response

Parameters

• i2c_addr (int) – i2c address

• register (int) – Register to read/write to

• data (list) – List of bytes

• force (Boolean) –

82 Chapter 3. API Reference

roboglia, Release 0.1.0

Returns List of bytes

Return type list

i2c_rdwr(*i2c_msgs)
Combine a series of i2c read and write operations in a single transaction (with repeated start bits but no
stop bits in between).

This method takes i2c_msg instances as input, which must be created first with i2c_msg.read() or
i2c_msg.write().

Parameters i2c_msgs (i2c_msg) – One or more i2c_msg class instances.

Return type None

process_call(i2c_addr, register, value, force=None)
Executes a SMBus Process Call, sending a 16-bit value and receiving a 16-bit response

Parameters

• i2c_addr (int) – i2c address

• register (int) – Register to read/write to

• value (int) – Word value to transmit

• force (Boolean) –

Return type int

read_block_data(i2c_addr, register, force=None)
Read a block of up to 32-bytes from a given register.

Parameters

• i2c_addr (int) – i2c address

• register (int) – Start register

• force (Boolean) –

Returns List of bytes

Return type list

read_byte(i2c_addr, force=None)
Read a single byte from a device.

Return type int

Parameters

• i2c_addr (int) – i2c address

• force (Boolean) –

Returns Read byte value

write_block_data(i2c_addr, register, data, force=None)
Write a block of byte data to a given register.

Parameters

• i2c_addr (int) – i2c address

• register (int) – Start register

• data (list) – List of bytes

3.3. i2c Module 83

roboglia, Release 0.1.0

• force (Boolean) –

Return type None

write_byte(i2c_addr, value, force=None)
Write a single byte to a device.

Parameters

• i2c_addr (int) – i2c address

• value (int) – value to write

• force (Boolean) –

write_i2c_block_data(dev_id, address, data)
Simulates the write of one block of data.

write_quick(i2c_addr, force=None)
Perform quick transaction. Throws IOError if unsuccessful. :param i2c_addr: i2c address :type i2c_addr:
int :param force: :type force: Boolean

Devices

I2CDevice Implements a representation of an I2C device.

3.3.4 roboglia.i2c.I2CDevice

class I2CDevice(**kwargs)
Bases: roboglia.base.device.BaseDevice

Implements a representation of an I2C device.

It only adds an override for the get_model_path() in order to localize the device definitions in the device
directory of the i2c module and the method open() that will attempt to read all the registers not marked as
sync.

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

get_model_path()
Builds the path to the .yml documents.

Returns

the path to the standard` directory with device definitions. In this case devices in the
i2c module directory.

Return type str

__str__()
Return str(self).

property bus
The bus where the device is connected to.

Returns The bus object using this device.

Return type BaseBus or SharedBus or subclass

close()
Perform device closure. BaseDevice implementation does nothing.

84 Chapter 3. API Reference

roboglia, Release 0.1.0

default_register()
Default register for the device in case is not explicitly provided in the device definition file.

Subclasses of BaseDevice can overide the method to derive their own class.

BaseDevice suggests as default register BaseRegister.

property dev_id
The device number.

Returns The device number

Return type int

property name
Device name.

Returns The name of the device

Return type str

open()
Performs initialization of the device by reading all registers that are not flagged for sync replication and,
if init parameter provided initializes the indicated registers with the values from the init paramters.

read_register(register)
Implements the read of a register using the associated bus. More complex devices should overwrite the
method to provide specific functionality.

BaseDevice simply calls the bus’s read function and returns the value received.

register_by_address(address)
Returns the register identified by the given address. If the address is not available in the device it will
return None.

Returns The device at address or None if no register with that address exits.

Return type BaseDevice or subclass or None

property registers
Device registers as dict.

Returns The dictionary of registers with the register name as key.

Return type dict

write_register(register, value)
Implements the write of a register using the associated bus. More complex devices should overwrite the
method to provide specific functionality.

BaseDevice simply calls the bus’s write function and returns the value received.

Syncs

I2CReadLoop Implements a read loop that is leveraging the ability to
read a range of registers in one go.

I2CWriteLoop Implements a write loop that is leveraging the ability to
write a range of registers in one go.

3.3. i2c Module 85

roboglia, Release 0.1.0

3.3.5 roboglia.i2c.I2CReadLoop

class I2CReadLoop(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Bases: roboglia.base.sync.BaseSync

Implements a read loop that is leveraging the ability to read a range of registers in one go.

The devices are provided in the group parameter and the registers in the registers as a list of register names. It
will update the int_value of each register for every device. Will log errors and not raise any exceptions.

setup()
Determines the start address and lengths for each bulk write. Previously the constructor checked that all
registers are available in all devices.

atomic()
Executes a SyncRead.

__init__(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Initialize self. See help(type(self)) for accurate signature.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

property devices
The devices used by the sync.

property frequency
Loop frequency.

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This

86 Chapter 3. API Reference

roboglia, Release 0.1.0

method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

process_registers()
Checks that the supplied registers are available in all devices.

property register_names
The register names used by the sync.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

property running
Indicates if the thread is running.

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

property started
Indicates if the thread was started.

stop()
Before calling the inherited method it un-flags the registers for syncing.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

3.3.6 roboglia.i2c.I2CWriteLoop

class I2CWriteLoop(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1,
review=1.0, group=None, registers=[], auto=True)

Bases: roboglia.base.sync.BaseSync

Implements a write loop that is leveraging the ability to write a range of registers in one go.

The devices are provided in the group parameter and the registers in the registers as a list of register names. It
will update from int_value of each register for every device. Will log errors and not raise any exceptions.

setup()
Determines the start address and lengths for each bulk write. Previously the constructor checked that all
registers are available in all devices.

atomic()
Executes a SyncWrite.

3.3. i2c Module 87

roboglia, Release 0.1.0

__init__(name='BASESYNC', patience=1.0, frequency=None, warning=0.9, throttle=0.1, re-
view=1.0, group=None, registers=[], auto=True)

Initialize self. See help(type(self)) for accurate signature.

property auto_start
Shows if the sync should be started automatically when the robot starts.

property bus
The bus this sync works with.

property devices
The devices used by the sync.

property frequency
Loop frequency.

get_register_range()
Determines the start address of the range of registers and the whole length. Registers do not need to be
order, but be careful that not all communication protocols can support gaps in the bulk read of registers.

Returns

• int – The start address of the range

• int – The length covering all the registers (including gaps)

• bool – True is the range of registers is contiguous

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

process_devices()
Processes the provided devices.

The devices are exected as a set in the init_dict. This is normally performed by the robot class when
reading the robot definition by replacing the name of the group with the actual content of the group. This
method checks that all devices are assigned to the same bus otherwise raises an exception. It returns the
single instance of the bus that manages all devices.

process_registers()
Checks that the supplied registers are available in all devices.

property register_names
The register names used by the sync.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

run()
Run method of the thread.

88 Chapter 3. API Reference

roboglia, Release 0.1.0

property running
Indicates if the thread is running.

start()
Checks that the bus is open, then refreshes the register, sets the sync flag before calling the inherited
:py:meth:BaseLoop.`start.

property started
Indicates if the thread was started.

stop()
Before calling the inherited method it un-flags the registers for syncing.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

3.4 move Module

This module contains classes that are concerned with higher level movements allowing to store and execute predeter-
mined routine movements.

Loops

StepLoop A thread that runs in the background and runs a se-
quence of steps.

3.4.1 roboglia.move.StepLoop

class StepLoop(name='STEPLOOP', patience=1.0, times=1)
Bases: roboglia.base.thread.BaseThread

A thread that runs in the background and runs a sequence of steps.

Parameters

• name (str) – The name of the step loop.

• patience (float) – A duration in seconds that the main thread will wait for the back-
ground thread to finish setup activities and indicate that it is in started mode.

• times (int) – How many times the loop should be played. If a negative number is given
(ex. -1) the loop will play to infinite

__init__(name='STEPLOOP', patience=1.0, times=1)
Initialize self. See help(type(self)) for accurate signature.

play()
Provides the step data. Should be overridden by subclasses and implement a yield logic. run() invokes
next on this method to get the data and the duration needed to perform one step.

3.4. move Module 89

roboglia, Release 0.1.0

setup()
Resets the loop from the begining.

run()
Wraps the execution between the duration provided and decrements iteration run.

atomic(data)
Executes the step.

Must be overridden in subclass to perform the specific operation on data.

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

resume()
Requests the thread to resume.

property running
Indicates if the thread is running.

start(wait=True)
Starts the task in it’s own thread.

property started
Indicates if the thread was started.

stop(wait=True)
Sends the stopping signal to the thread. By default waits for the thread to finish.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

Scrips

Script A Script is the top level structure used for defining pre-
scribed motion for a robot.

Scene A Scene is a collection of Sequence presented in an
ordered list.

Sequence A Sequence is an ordered list of of frames that have
associated durations in seconds and can be played in a
loop a number of times.

Frame A Frame is a single representation of the robots’ joints
at one point in time.

90 Chapter 3. API Reference

roboglia, Release 0.1.0

3.4.2 roboglia.move.Script

class Script(name='SCRIPT', patience=1.0, times=1, robot=None, defaults={}, joints=[], frames={},
sequences={}, scenes={}, script=[])

Bases: roboglia.move.thread.StepLoop

A Script is the top level structure used for defining prescribed motion for a robot.

Parameters

• name (str) – The name of the script

• patience (float) – A duration in seconds that the main thread will wait for the back-
ground thread to finish setup activities and indicate that it is in started mode.

• times (int) – How many times the loop should be played. If a negative number is given
(ex. -1) the loop will play to infinite

• robot (BaseRobot or subclass) – The robot that will be performing the script

• defaults (dict) – A dictionary with default behavior. Supported elements for the mo-
ment:

– ”duration” (specifies the duration of a sequence transition, if no explicit one is provided)

– others to come. . .

• times – The number of times the script steps will be executed when play() will be
invoked. Default is 1.

• joints (list of Joint or subclasses) – An ordered list of joints that are used
by the script. The frame definitions later uses this order when describing the states.

• frames (dict of Frame) – The Frame definitions used by the script. See the information
for this class for more details.

• sequences (dict of Sequence) – The Sequence defintions that are used by the script.
See the information for this class for more details.

• scenes (dict of Scene) – The Scene defintions used by the Script. See the information
for this class for more details.

• script (list of Scene) – An ordered list of Scenes that represent the complete Script.
When the script is played the scenes are run in the order provided and, if the times param-
eter is different than 1, it will repeat the execution in a loop.

__init__(name='SCRIPT', patience=1.0, times=1, robot=None, defaults={}, joints=[], frames={},
sequences={}, scenes={}, script=[])

Initialize self. See help(type(self)) for accurate signature.

classmethod from_yaml(robot, file_name)
Reads the script defintion from a YAML file.

property robot
The robot associated with the Script.

property defaults
Default values for Script.

property joints
The joints used by the Script.

property frames
The dictionary of Frames used by the Script.

3.4. move Module 91

roboglia, Release 0.1.0

property sequences
The dictionary of Sequences used by the Script.

property scenes
The dictionary of Scenes used by the Script.

property script
Returns the script (the list of scenes to be executed).

play()
Inherited from StepLoop. Iterates over the scenes and produces the commands.

atomic(data)
Inherited from StepLoop. Submits the data to the robot manager only for valid joints.

teardown()
Informs the robot manager we are finished.

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

resume()
Requests the thread to resume.

run()
Wraps the execution between the duration provided and decrements iteration run.

property running
Indicates if the thread is running.

setup()
Resets the loop from the begining.

start(wait=True)
Starts the task in it’s own thread.

property started
Indicates if the thread was started.

stop(wait=True)
Sends the stopping signal to the thread. By default waits for the thread to finish.

property stopped
Indicates if the thread was stopped.

3.4.3 roboglia.move.Scene

class Scene(name='SCENE', sequences=[], times=1)
Bases: object

A Scene is a collection of Sequence presented in an ordered list.

Parameters

• name (str) – The name of the Scene

• sequences (list of Sequence) – The Sequences that make the Scene.

92 Chapter 3. API Reference

roboglia, Release 0.1.0

• times (int) – A repeat counter for playing the list of Sequences when the play() is
invoked.

__init__(name='SCENE', sequences=[], times=1)
Initialize self. See help(type(self)) for accurate signature.

property name
The name of the Scene.

property sequences
The list of Sequences in the Scene.

property times
The repetition counter for the Scene.

play()
Performs a Scene. Inherited from StepLoop. Iterates over the Sequences and produces the commands.

3.4.4 roboglia.move.Sequence

class Sequence(name='SEQUENCE', frames=[], durations=[], times=1)
Bases: object

A Sequence is an ordered list of of frames that have associated durations in seconds and can be played in a loop
a number of times.

Parameters

• name (str) – The name of the sequence

• frames (list of Frame) – The frames contained in the sequence. The order in which the
frames are listed is the order in which they will be played

• durations (list of float) – The durations in seconds for each frame. If the length
of the list is different than the length of the frames there will be a critical error logged and
the sequence will not be loaded.

• times (int) – The number of times the sequence should be played. Default is 1.

__init__(name='SEQUENCE', frames=[], durations=[], times=1)
Initialize self. See help(type(self)) for accurate signature.

property name
The name of the sequence.

property frames
The list of Frame in the sequence.

property durations
The durations associated with each frame.

property times
The number of times the sequence will be played in a loop.

play(reverse=False)
Plays the sequence. Produces an iterator over all the frames, repeating as many times as requested.

Parameters reverse (bool) – Indicates if the frames should be played in reverse order.

Returns commands is the list of (pos, vel, load) for each joint from the frame, and duration
is the specified duration for the frame.

Return type iterator of tuple (commands, duration)

3.4. move Module 93

roboglia, Release 0.1.0

3.4.5 roboglia.move.Frame

class Frame(name='FRAME', positions=[], velocities=[], loads=[])
Bases: object

A Frame is a single representation of the robots’ joints at one point in time. It is described by a list of positions,
the velocities wanted to get to those positions and the loads. The last two of them are optional and will be
padded with nan in case they do not cover all positions listed in the first parameter.

Parameters

• name (str) – The name of the frame

• positions (list of floats) – The desired positions for the joints. They are pro-
vided in the same order as the number of joints that are described at the begining of the
Script where the frame is used. The unit of measure is the one used for the joints which
in turn is dependent on the settings of the registers used by joints.

• velocities (list of floats) – The velocities used to move to the desired posi-
tions. If they are empty or not all covered, the constructor will padded with nan to make it
the same size as the positions. You can also use nan in the list to indicate that a particular
joint does not need to change the velocity (will continue to use the one set previously).

• loads (list of floats) – The loads used to move to the desired positions. If they
are empty or not all covered, the constructor will padded with nan to make it the same size
as the positions. You can also use nan in the list to indicate that a particular joint does not
need to change the load (will continue to use the one set previously).

__init__(name='FRAME', positions=[], velocities=[], loads=[])
Initialize self. See help(type(self)) for accurate signature.

property positions
Returns the positions of a frame.

property velocities
Returns the (padded) velocities of a frame.

property loads
Returns the (padded) loads of a frame.

property commands
Returns a list of tuples (pos, vel, load) for each joint in the frame.

Motion

Motion Class that helps with the implementation of code-driven
joint control.

3.4.6 roboglia.move.Motion

class Motion(name='MOTION', patience=1.0, frequency=None, warning=0.9, throttle=0.1, review=1.0,
manager=None, joints=[])

Bases: roboglia.base.thread.BaseLoop

Class that helps with the implementation of code-driven joint control. It is a subclass of BaseLoop and inherits
all its properties. In addition it stores references to the robot and the joints that are used. For convenience
it includes a ticks property that provides the number of seconds from the start of the loop. It is intended to be
used to generate behavior that is dependent of time (ex. sinus / cosines) trajectories.

Parameters

94 Chapter 3. API Reference

roboglia, Release 0.1.0

• name (str) – The name of the motion

• patience (float) – A duration in seconds that the main thread will wait for the back-
ground thread to finish setup activities and indicate that it is in started mode.

• frequency (float) – The loop frequency in [Hz]

• warning (float) – Indicates a threshold in range [0..1] indicating when warnings should
be logged to the logger in case the execution frequency is bellow the target. A 0.8 value
indicates the real execution is less than 0.8 * target_frequency. The statistic is calculated
over a period of time specified by the parameter review.

• throttle (float) – Is a float (< 1.0) that is used by the monitoring of execution statistics
to adjust the wait time in order to produce the desired processing frequency.

• review (float) – The time in [s] to calculate the statistics for the frequency.

• robot (JointManager or subclass) – The robot Joint Manager that controls the
moves.

• joints (list of Joint or subclass) – The joints used by the motion process.

__init__(name='MOTION', patience=1.0, frequency=None, warning=0.9, throttle=0.1, review=1.0,
manager=None, joints=[])

Initialize self. See help(type(self)) for accurate signature.

setup()
Called when starting the loop. Resets the ticks counter.

manager()
The robot associated with the motion.

joints()
Joints used by the motion.

ticks()
Seconds passed since the loop started.

atomic()
Called with frequency frequency, this should be implemented in the subclass that implements the mo-
tion.

property frequency
Loop frequency.

property name
Returns the name of the thread.

pause()
Requests the thread to pause.

property paused
Indicates the thread was paused.

property period
Loop period = 1 / frequency.

resume()
Requests the thread to resume.

property review
Indicates the amount of time in seconds before the thread will review the actual frequency against the
target and take action.

3.4. move Module 95

roboglia, Release 0.1.0

run()
Run method of the thread.

property running
Indicates if the thread is running.

start(wait=True)
Starts the task in it’s own thread.

property started
Indicates if the thread was started.

stop(wait=True)
Sends the stopping signal to the thread. By default waits for the thread to finish.

property stopped
Indicates if the thread was stopped.

teardown()
Thread cleanup. Subclasses should override.

property warning
Control the warning level for the warning message, the setter is smart: if the value is larger than 2 it will
assume it is a percentage and divied it by 100 and ignore if the number is higher than 110. The over 100 is
available for testing purposes.

3.5 utils Module

Factory

register_class(class_obj) Registers a class with the class factory dictionary.
unregister_class(class_name) Removes a class from the class factory dictionary thus

making it unavaialble for dynamic instantiation.
get_registered_class(class_name) Retrieves a class object from the class factory by name.
registered_classes() Convenience function to inspect the dictionary of regis-

tered classes.

3.5.1 roboglia.utils.register_class

register_class(class_obj)
Registers a class with the class factory dictionary. If the class is already registered the function does not replace
it. In the factory the class is represented by name.

Parameters cls (class object) – is the class to be registerd.

Raises ValueError – if the parameter passed is not a Class object.

96 Chapter 3. API Reference

roboglia, Release 0.1.0

3.5.2 roboglia.utils.unregister_class

unregister_class(class_name)
Removes a class from the class factory dictionary thus making it unavaialble for dynamic instantiation.

Parameters class_name (str) – the name of the class to be removed.

Raises KeyError – if the class name is not in the class factory dictionary.

3.5.3 roboglia.utils.get_registered_class

get_registered_class(class_name)
Retrieves a class object from the class factory by name.

Parameters class_name (str) – the name of the class to be retrieved.

Returns the class requested

Return type class type

Raises KeyError – if the class name is not in the class factory dictionary.

Example

The way the get_regstered_class is to be used is by first retrieving the needed class object and then instantiating
it according to the rules for that class:

bus_class = get_registered_class('DynamixelBus')
bus = bus_class(init_dict)

3.5.4 roboglia.utils.registered_classes

registered_classes()
Convenience function to inspect the dictionary of registered classes.

Returns the registered class dictionary in format {class_name: class_ref}

Return type dict

Check Utilities

check_key(key, dict_info, context, . . . [, . . .]) Checks if a key is in a dictionary dict_info and raises a
customized exception message with better context.

check_type(value, to_type, context, . . . [, . . .]) Checks if a value is of a certain type and raises a cus-
tomized exception message with better context.

check_options(value, options, context, . . .) Checks if a value is in a list of allowed options.

3.5. utils Module 97

roboglia, Release 0.1.0

3.5.5 roboglia.utils.check_key

check_key(key, dict_info, context, context_id, logger, message=None)
Checks if a key is in a dictionary dict_info and raises a customized exception message with better context.

Parameters

• key (str) – the key we are looking for

• dict_info (dict) – the dictionary where we are looking

• context (str) – a string indicating the context of the check, for example ‘Bus’ or ‘De-
vice’

• context_id (str or int) – indicates the precise context (the name of the object or,
in case the key we are searching is the name we will have to use the index of the item in the
initialization dictionary)

• logger (logger object) – where the logging will be written

• message (str) – if this is provided the function will use this message for logging and
raise instead of building a message specific for the context.

Raises KeyError – if the key is not found in the dict_info

3.5.6 roboglia.utils.check_type

check_type(value, to_type, context, context_id, logger, message=None)
Checks if a value is of a certain type and raises a customized exception message with better context.

Parameters

• value (any) – a value to be checked

• to_type (type) – the type to be checked against

• context (str) – a string indicating the context of the check, for example ‘Bus’ or ‘De-
vice’

• context_id (str or int) – indicates the precise context (the name of the object or,
in case the key we are searching is the name we will have to use the index of the item in the
initialization dictionary)

• logger (logger object) – where the logging will be written

• message (str) – if this is provided the function will use this message for logging and
raise instead of building a message specific for the context.

Raises ValueError – if the value is not of the type indicated

3.5.7 roboglia.utils.check_options

check_options(value, options, context, context_id, logger, message=None)
Checks if a value is in a list of allowed options.

Parameters

• value (any) – a value to be checked

• options (list) – the allowed options for the value

98 Chapter 3. API Reference

roboglia, Release 0.1.0

• context (str) – a string indicating the context of the check, for example ‘Bus’ or ‘De-
vice’

• context_id (str or int) – indicates the precise context (the name of the object or,
in case the key we are searching is the name we will have to use the index of the item in the
initialization dictionary)

• logger (logger object) – where the logging will be written

• message (str) – if this is provided the function will use this message for logging and
raise instead of building a message specific for the context.

Raises ValueError – if the value is not in the allowed options

3.5. utils Module 99

roboglia, Release 0.1.0

100 Chapter 3. API Reference

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

101

roboglia, Release 0.1.0

102 Chapter 4. Indices and tables

PYTHON MODULE INDEX

r
roboglia.base, 15
roboglia.dynamixel, 62
roboglia.i2c, 77
roboglia.move, 89
roboglia.utils, 96

103

roboglia, Release 0.1.0

104 Python Module Index

INDEX

Symbols
__add__() (PVL method), 52
__enter__() (MockSMBus method), 82
__eq__() (PVL method), 52
__exit__() (MockSMBus method), 82
__getattr__() (SharedBus method), 20
__getattr__() (SharedDynamixelBus method), 65
__getattr__() (SharedFileBus method), 21
__getattr__() (SharedI2CBus method), 79
__getitem__() (PVLList method), 53
__init__() (BaseBus method), 16
__init__() (BaseDevice method), 36
__init__() (BaseLoop method), 39
__init__() (BaseReadSync method), 43
__init__() (BaseRegister method), 24
__init__() (BaseRobot method), 47
__init__() (BaseSync method), 41
__init__() (BaseThread method), 38
__init__() (BaseWriteSync method), 45
__init__() (BoolRegister method), 26
__init__() (DynamixelBulkReadLoop method), 74
__init__() (DynamixelBulkWriteLoop method), 76
__init__() (DynamixelBus method), 63
__init__() (DynamixelDevice method), 69
__init__() (DynamixelSyncReadLoop method), 70
__init__() (DynamixelSyncWriteLoop method), 72
__init__() (FileBus method), 17
__init__() (Frame method), 94
__init__() (I2CBus method), 78
__init__() (I2CDevice method), 84
__init__() (I2CReadLoop method), 86
__init__() (I2CWriteLoop method), 87
__init__() (Joint method), 55
__init__() (JointManager method), 49
__init__() (JointPV method), 56
__init__() (JointPVL method), 57
__init__() (MockPacketHandler method), 67
__init__() (MockSMBus method), 82
__init__() (Motion method), 95
__init__() (PVL method), 52
__init__() (PVLList method), 53
__init__() (RegisterWithConversion method), 28

__init__() (RegisterWithDynamicConversion
method), 30

__init__() (RegisterWithMapping method), 34
__init__() (RegisterWithThreshold method), 32
__init__() (Scene method), 93
__init__() (Script method), 91
__init__() (Sensor method), 59
__init__() (SensorXYZ method), 61
__init__() (Sequence method), 93
__init__() (SharedBus method), 18
__init__() (SharedDynamixelBus method), 65
__init__() (SharedFileBus method), 20
__init__() (SharedI2CBus method), 79
__init__() (StepLoop method), 89
__len__() (PVLList method), 53
__neg__() (PVL method), 53
__repr__() (BaseBus method), 16
__repr__() (DynamixelBus method), 64
__repr__() (FileBus method), 18
__repr__() (I2CBus method), 79
__repr__() (Joint method), 56
__repr__() (JointPV method), 56
__repr__() (JointPVL method), 59
__repr__() (PVL method), 53
__repr__() (PVLList method), 53
__repr__() (SharedBus method), 20
__repr__() (SharedDynamixelBus method), 65
__repr__() (SharedFileBus method), 21
__repr__() (SharedI2CBus method), 80
__str__() (BaseDevice method), 37
__str__() (BaseRegister method), 25
__str__() (BoolRegister method), 26
__str__() (DynamixelDevice method), 69
__str__() (FileBus method), 18
__str__() (I2CDevice method), 84
__str__() (RegisterWithConversion method), 28
__str__() (RegisterWithDynamicConversion method),

30
__str__() (RegisterWithMapping method), 34
__str__() (RegisterWithThreshold method), 32
__str__() (SharedFileBus method), 21
__sub__() (PVL method), 52

105

roboglia, Release 0.1.0

A
access() (BaseRegister property), 24
access() (BoolRegister property), 26
access() (RegisterWithConversion property), 28
access() (RegisterWithDynamicConversion property),

30
access() (RegisterWithMapping property), 34
access() (RegisterWithThreshold property), 33
activate_register() (Joint property), 55
activate_register() (JointPV property), 56
activate_register() (JointPVL property), 57
activate_register() (Sensor property), 60
activate_register() (SensorXYZ property), 62
active() (Joint property), 55
active() (JointPV property), 56
active() (JointPVL property), 57
active() (Sensor property), 60
active() (SensorXYZ property), 62
address() (BaseRegister property), 24
address() (BoolRegister property), 26
address() (RegisterWithConversion property), 28
address() (RegisterWithDynamicConversion prop-

erty), 30
address() (RegisterWithMapping property), 34
address() (RegisterWithThreshold property), 33
append() (PVLList method), 53
atomic() (BaseLoop method), 40
atomic() (BaseReadSync method), 43
atomic() (BaseSync method), 42
atomic() (BaseWriteSync method), 45
atomic() (DynamixelBulkReadLoop method), 74
atomic() (DynamixelBulkWriteLoop method), 76
atomic() (DynamixelSyncReadLoop method), 71
atomic() (DynamixelSyncWriteLoop method), 72
atomic() (I2CReadLoop method), 86
atomic() (I2CWriteLoop method), 87
atomic() (JointManager method), 50
atomic() (Motion method), 95
atomic() (Script method), 92
atomic() (StepLoop method), 90
auto_activate() (Joint property), 55
auto_activate() (JointPV property), 57
auto_activate() (JointPVL property), 58
auto_activate() (Sensor property), 60
auto_activate() (SensorXYZ property), 62
auto_open() (BaseBus property), 16
auto_open() (DynamixelBus property), 64
auto_open() (FileBus property), 18
auto_open() (I2CBus property), 79
auto_start() (BaseReadSync property), 43
auto_start() (BaseSync property), 41
auto_start() (BaseWriteSync property), 45
auto_start() (DynamixelBulkReadLoop property),

74

auto_start() (DynamixelBulkWriteLoop property),
76

auto_start() (DynamixelSyncReadLoop property),
71

auto_start() (DynamixelSyncWriteLoop property),
72

auto_start() (I2CReadLoop property), 86
auto_start() (I2CWriteLoop property), 88

B
BaseBus (class in roboglia.base), 15
BaseDevice (class in roboglia.base), 36
BaseLoop (class in roboglia.base), 39
BaseReadSync (class in roboglia.base), 43
BaseRegister (class in roboglia.base), 23
BaseRobot (class in roboglia.base), 47
BaseSync (class in roboglia.base), 40
BaseThread (class in roboglia.base), 38
BaseWriteSync (class in roboglia.base), 45
baudrate() (DynamixelBus property), 63
bits() (BoolRegister property), 26
block_process_call() (MockSMBus method), 82
BoolRegister (class in roboglia.base), 26
bulkReadTx() (MockPacketHandler method), 68
bulkWriteTxOnly() (MockPacketHandler method),

68
bus() (BaseDevice property), 37
bus() (BaseReadSync property), 43
bus() (BaseSync property), 41
bus() (BaseWriteSync property), 45
bus() (DynamixelBulkReadLoop property), 74
bus() (DynamixelBulkWriteLoop property), 76
bus() (DynamixelDevice property), 69
bus() (DynamixelSyncReadLoop property), 71
bus() (DynamixelSyncWriteLoop property), 72
bus() (I2CDevice property), 84
bus() (I2CReadLoop property), 86
bus() (I2CWriteLoop property), 88
buses() (BaseRobot property), 48

C
cache (BaseDevice attribute), 36
can_use() (SharedBus method), 18
can_use() (SharedDynamixelBus method), 65
can_use() (SharedFileBus method), 21
can_use() (SharedI2CBus method), 80
check_key() (in module roboglia.utils), 98
check_options() (in module roboglia.utils), 98
check_type() (in module roboglia.utils), 98
clone() (BaseRegister property), 24
clone() (BoolRegister property), 26
clone() (RegisterWithConversion property), 29
clone() (RegisterWithDynamicConversion property),

30

106 Index

roboglia, Release 0.1.0

clone() (RegisterWithMapping property), 34
clone() (RegisterWithThreshold property), 33
close() (BaseBus method), 16
close() (BaseDevice method), 37
close() (DynamixelBus method), 63
close() (DynamixelDevice method), 69
close() (FileBus method), 17
close() (I2CBus method), 78
close() (I2CDevice method), 84
close() (MockSMBus method), 82
commands() (Frame property), 94

D
default() (BaseRegister property), 25
default() (BoolRegister property), 26
default() (RegisterWithConversion property), 29
default() (RegisterWithDynamicConversion prop-

erty), 30
default() (RegisterWithMapping property), 34
default() (RegisterWithThreshold property), 33
default_register() (BaseDevice method), 37
default_register() (DynamixelDevice method),

69
default_register() (I2CDevice method), 84
defaults() (Script property), 91
desired() (Joint property), 56
desired() (JointPV property), 56
desired() (JointPVL property), 59
desired_load() (JointPVL property), 59
desired_position() (Joint property), 55
desired_position() (JointPV property), 57
desired_position() (JointPVL property), 58
desired_velocity() (JointPV property), 56
desired_velocity() (JointPVL property), 58
dev_id() (BaseDevice property), 37
dev_id() (DynamixelDevice property), 69
dev_id() (I2CDevice property), 85
device() (BaseRegister property), 24
device() (BoolRegister property), 26
device() (Joint property), 55
device() (JointPV property), 57
device() (JointPVL property), 58
device() (RegisterWithConversion property), 29
device() (RegisterWithDynamicConversion property),

30
device() (RegisterWithMapping property), 34
device() (RegisterWithThreshold property), 33
device() (Sensor property), 59
device() (SensorXYZ property), 61
device_by_id() (BaseRobot method), 48
devices() (BaseReadSync property), 43
devices() (BaseRobot property), 48
devices() (BaseSync property), 41
devices() (BaseWriteSync property), 45

devices() (DynamixelBulkReadLoop property), 74
devices() (DynamixelBulkWriteLoop property), 76
devices() (DynamixelSyncReadLoop property), 71
devices() (DynamixelSyncWriteLoop property), 72
devices() (I2CReadLoop property), 86
devices() (I2CWriteLoop property), 88
durations() (Sequence property), 93
DynamixelBulkReadLoop (class in

roboglia.dynamixel), 74
DynamixelBulkWriteLoop (class in

roboglia.dynamixel), 76
DynamixelBus (class in roboglia.dynamixel), 62
DynamixelDevice (class in roboglia.dynamixel), 69
DynamixelSyncReadLoop (class in

roboglia.dynamixel), 70
DynamixelSyncWriteLoop (class in

roboglia.dynamixel), 72

F
factor() (RegisterWithConversion property), 28
factor() (RegisterWithDynamicConversion property),

30
factor() (RegisterWithThreshold property), 32
factor_reg() (RegisterWithDynamicConversion

property), 30
FileBus (class in roboglia.base), 17
Frame (class in roboglia.move), 94
frames() (Script property), 91
frames() (Sequence property), 93
frequency() (BaseLoop property), 39
frequency() (BaseReadSync property), 43
frequency() (BaseSync property), 42
frequency() (BaseWriteSync property), 45
frequency() (DynamixelBulkReadLoop property), 74
frequency() (DynamixelBulkWriteLoop property), 76
frequency() (DynamixelSyncReadLoop property), 71
frequency() (DynamixelSyncWriteLoop property),

73
frequency() (I2CReadLoop property), 86
frequency() (I2CWriteLoop property), 88
frequency() (JointManager property), 50
frequency() (Motion property), 95
from_yaml() (BaseRobot class method), 47
from_yaml() (Script class method), 91

G
get_model_path() (BaseDevice method), 37
get_model_path() (DynamixelDevice method), 69
get_model_path() (I2CDevice method), 84
get_register_range() (BaseReadSync method),

43
get_register_range() (BaseSync method), 41
get_register_range() (BaseWriteSync method),

45

Index 107

roboglia, Release 0.1.0

get_register_range() (DynamixelBulkReadLoop
method), 74

get_register_range() (DynamixelBulkWriteLoop
method), 76

get_register_range() (DynamixelSyncReadLoop
method), 71

get_register_range() (Dynamixel-
SyncWriteLoop method), 73

get_register_range() (I2CReadLoop method),
86

get_register_range() (I2CWriteLoop method),
88

get_registered_class() (in module
roboglia.utils), 97

getProtocolVersion() (MockPacketHandler
method), 67

getRxPacketError() (MockPacketHandler
method), 67

getTxRxResult() (MockPacketHandler method), 67
groups() (BaseRobot property), 48

I
i2c_rdwr() (MockSMBus method), 83
I2CBus (class in roboglia.i2c), 78
I2CDevice (class in roboglia.i2c), 84
I2CReadLoop (class in roboglia.i2c), 86
I2CWriteLoop (class in roboglia.i2c), 87
inits() (BaseRobot property), 48
int_value() (BaseRegister property), 25
int_value() (BoolRegister property), 26
int_value() (RegisterWithConversion property), 29
int_value() (RegisterWithDynamicConversion prop-

erty), 30
int_value() (RegisterWithMapping property), 34
int_value() (RegisterWithThreshold property), 33
inv_mapping() (RegisterWithMapping property), 35
inverse() (Joint property), 55
inverse() (JointPV property), 57
inverse() (JointPVL property), 58
inverse() (Sensor property), 60
is_open() (BaseBus property), 16
is_open() (DynamixelBus property), 63
is_open() (FileBus property), 17
is_open() (I2CBus property), 78
items() (PVLList property), 53

J
Joint (class in roboglia.base), 54
JointManager (class in roboglia.base), 49
JointPV (class in roboglia.base), 56
JointPVL (class in roboglia.base), 57
joints() (BaseRobot property), 48
joints() (Motion method), 95
joints() (Script property), 91

L
ld() (PVL property), 52
ld_func() (JointManager property), 49
load() (JointPVL property), 58
load_read_register() (JointPVL property), 58
load_write_register() (JointPVL property), 58
loads() (Frame property), 94
loads() (PVLList property), 53

M
manager() (BaseRobot property), 48
manager() (Motion method), 95
mapping() (RegisterWithMapping property), 34
mask() (BoolRegister property), 26
mask() (RegisterWithMapping property), 35
max_ext() (BaseRegister property), 24
max_ext() (BoolRegister property), 26
max_ext() (RegisterWithConversion property), 29
max_ext() (RegisterWithDynamicConversion prop-

erty), 31
max_ext() (RegisterWithMapping property), 34
max_ext() (RegisterWithThreshold property), 33
maxim() (BaseRegister property), 24
maxim() (BoolRegister property), 27
maxim() (RegisterWithConversion property), 29
maxim() (RegisterWithDynamicConversion property),

31
maxim() (RegisterWithMapping property), 34
maxim() (RegisterWithThreshold property), 33
min_ext() (BaseRegister property), 24
min_ext() (BoolRegister property), 27
min_ext() (RegisterWithConversion property), 29
min_ext() (RegisterWithDynamicConversion prop-

erty), 31
min_ext() (RegisterWithMapping property), 34
min_ext() (RegisterWithThreshold property), 33
minim() (BaseRegister property), 24
minim() (BoolRegister property), 27
minim() (RegisterWithConversion property), 29
minim() (RegisterWithDynamicConversion property),

31
minim() (RegisterWithMapping property), 34
minim() (RegisterWithThreshold property), 33
MockPacketHandler (class in roboglia.dynamixel),

67
MockSMBus (class in roboglia.i2c), 82
mode() (BoolRegister property), 26
module

roboglia.base, 15
roboglia.dynamixel, 62
roboglia.i2c, 77
roboglia.move, 89
roboglia.utils, 96

Motion (class in roboglia.move), 94

108 Index

roboglia, Release 0.1.0

N
naked_read() (SharedBus method), 19
naked_read() (SharedDynamixelBus method), 65
naked_read() (SharedFileBus method), 21
naked_read() (SharedI2CBus method), 80
naked_write() (SharedBus method), 19
naked_write() (SharedDynamixelBus method), 66
naked_write() (SharedFileBus method), 21
naked_write() (SharedI2CBus method), 80
name() (BaseBus property), 16
name() (BaseDevice property), 36
name() (BaseLoop property), 40
name() (BaseReadSync property), 43
name() (BaseRegister property), 24
name() (BaseRobot property), 48
name() (BaseSync property), 42
name() (BaseThread property), 38
name() (BaseWriteSync property), 45
name() (BoolRegister property), 27
name() (DynamixelBulkReadLoop property), 74
name() (DynamixelBulkWriteLoop property), 76
name() (DynamixelBus property), 64
name() (DynamixelDevice property), 69
name() (DynamixelSyncReadLoop property), 71
name() (DynamixelSyncWriteLoop property), 73
name() (FileBus property), 18
name() (I2CBus property), 79
name() (I2CDevice property), 85
name() (I2CReadLoop property), 86
name() (I2CWriteLoop property), 88
name() (Joint property), 55
name() (JointManager property), 50
name() (JointPV property), 57
name() (JointPVL property), 58
name() (Motion property), 95
name() (RegisterWithConversion property), 29
name() (RegisterWithDynamicConversion property), 31
name() (RegisterWithMapping property), 35
name() (RegisterWithThreshold property), 33
name() (Scene property), 93
name() (Script property), 92
name() (Sensor property), 59
name() (SensorXYZ property), 61
name() (Sequence property), 93
name() (StepLoop property), 90

O
offset() (Joint property), 55
offset() (JointPV property), 57
offset() (JointPVL property), 58
offset() (RegisterWithConversion property), 28
offset() (RegisterWithDynamicConversion property),

31
offset() (Sensor property), 60

open() (BaseBus method), 16
open() (BaseDevice method), 37
open() (DynamixelBus method), 63
open() (DynamixelDevice method), 70
open() (FileBus method), 17
open() (I2CBus method), 78
open() (I2CDevice method), 85
open() (MockSMBus method), 82
order() (BaseRegister property), 25
order() (BoolRegister property), 27
order() (RegisterWithConversion property), 29
order() (RegisterWithDynamicConversion property),

31
order() (RegisterWithMapping property), 35
order() (RegisterWithThreshold property), 33

P
p() (PVL property), 52
p_func() (JointManager property), 49
packet_handler() (DynamixelBus property), 63
pause() (BaseLoop method), 40
pause() (BaseReadSync method), 43
pause() (BaseSync method), 42
pause() (BaseThread method), 39
pause() (BaseWriteSync method), 45
pause() (DynamixelBulkReadLoop method), 75
pause() (DynamixelBulkWriteLoop method), 76
pause() (DynamixelSyncReadLoop method), 71
pause() (DynamixelSyncWriteLoop method), 73
pause() (I2CReadLoop method), 86
pause() (I2CWriteLoop method), 88
pause() (JointManager method), 50
pause() (Motion method), 95
pause() (Script method), 92
pause() (StepLoop method), 90
paused() (BaseLoop property), 40
paused() (BaseReadSync property), 43
paused() (BaseSync property), 42
paused() (BaseThread property), 38
paused() (BaseWriteSync property), 45
paused() (DynamixelBulkReadLoop property), 75
paused() (DynamixelBulkWriteLoop property), 76
paused() (DynamixelSyncReadLoop property), 71
paused() (DynamixelSyncWriteLoop property), 73
paused() (I2CReadLoop property), 86
paused() (I2CWriteLoop property), 88
paused() (JointManager property), 51
paused() (Motion property), 95
paused() (Script property), 92
paused() (StepLoop property), 90
period() (BaseLoop property), 39
period() (BaseReadSync property), 43
period() (BaseSync property), 42
period() (BaseWriteSync property), 45

Index 109

roboglia, Release 0.1.0

period() (DynamixelBulkReadLoop property), 75
period() (DynamixelBulkWriteLoop property), 76
period() (DynamixelSyncReadLoop property), 71
period() (DynamixelSyncWriteLoop property), 73
period() (I2CReadLoop property), 86
period() (I2CWriteLoop property), 88
period() (JointManager property), 51
period() (Motion property), 95
ping() (DynamixelBus method), 63
ping() (MockPacketHandler method), 68
play() (Scene method), 93
play() (Script method), 92
play() (Sequence method), 93
play() (StepLoop method), 89
port() (BaseBus property), 16
port() (DynamixelBus property), 64
port() (FileBus property), 18
port() (I2CBus property), 79
port_handler() (DynamixelBus property), 63
position() (Joint property), 55
position() (JointPV property), 57
position() (JointPVL property), 58
position_read_register() (Joint property), 55
position_read_register() (JointPV property),

57
position_read_register() (JointPVL property),

58
position_write_register() (Joint property), 55
position_write_register() (JointPV property),

57
position_write_register() (JointPVL prop-

erty), 58
positions() (Frame property), 94
positions() (PVLList property), 53
process() (PVLList method), 54
process_call() (MockSMBus method), 83
process_devices() (BaseReadSync method), 43
process_devices() (BaseSync method), 41
process_devices() (BaseWriteSync method), 45
process_devices() (DynamixelBulkReadLoop

method), 75
process_devices() (DynamixelBulkWriteLoop

method), 76
process_devices() (DynamixelSyncReadLoop

method), 71
process_devices() (DynamixelSyncWriteLoop

method), 73
process_devices() (I2CReadLoop method), 86
process_devices() (I2CWriteLoop method), 88
process_registers() (BaseReadSync method), 44
process_registers() (BaseSync method), 41
process_registers() (BaseWriteSync method), 45
process_registers() (DynamixelBulkReadLoop

method), 75

process_registers() (DynamixelBulkWriteLoop
method), 76

process_registers() (DynamixelSyncReadLoop
method), 71

process_registers() (DynamixelSyncWriteLoop
method), 73

process_registers() (I2CReadLoop method), 87
process_registers() (I2CWriteLoop method), 88
protocol() (DynamixelBus property), 63
PVL (class in roboglia.base), 52
PVLList (class in roboglia.base), 53

R
range() (BaseRegister property), 24
range() (BoolRegister property), 27
range() (Joint property), 55
range() (JointPV property), 57
range() (JointPVL property), 58
range() (RegisterWithConversion property), 29
range() (RegisterWithDynamicConversion property),

31
range() (RegisterWithMapping property), 35
range() (RegisterWithThreshold property), 33
range_ext() (BaseRegister property), 24
range_ext() (BoolRegister property), 27
range_ext() (RegisterWithConversion property), 29
range_ext() (RegisterWithDynamicConversion prop-

erty), 31
range_ext() (RegisterWithMapping property), 35
range_ext() (RegisterWithThreshold property), 33
read() (BaseBus method), 16
read() (BaseRegister method), 25
read() (BoolRegister method), 27
read() (DynamixelBus method), 64
read() (FileBus method), 17
read() (I2CBus method), 78
read() (RegisterWithConversion method), 29
read() (RegisterWithDynamicConversion method), 31
read() (RegisterWithMapping method), 35
read() (RegisterWithThreshold method), 33
read() (SharedBus method), 20
read() (SharedDynamixelBus method), 66
read() (SharedFileBus method), 22
read() (SharedI2CBus method), 81
read1ByteTxRx() (MockPacketHandler method), 68
read2ByteTxRx() (MockPacketHandler method), 68
read4ByteTxRx() (MockPacketHandler method), 68
read_block() (I2CBus method), 79
read_block_data() (MockSMBus method), 83
read_byte() (MockSMBus method), 83
read_byte_data() (MockSMBus method), 82
read_i2c_block_data() (MockSMBus method),

82
read_register() (BaseDevice method), 37

110 Index

roboglia, Release 0.1.0

read_register() (DynamixelDevice method), 70
read_register() (I2CDevice method), 85
read_register() (Sensor property), 60
read_word_data() (MockSMBus method), 82
readRx() (MockPacketHandler method), 68
readTxRx() (MockPacketHandler method), 68
register_by_address() (BaseDevice method), 37
register_by_address() (DynamixelDevice

method), 70
register_by_address() (I2CDevice method), 85
register_class() (in module roboglia.utils), 96
register_low_endian() (DynamixelDevice

method), 69
register_names() (BaseReadSync property), 44
register_names() (BaseSync property), 41
register_names() (BaseWriteSync property), 46
register_names() (DynamixelBulkReadLoop prop-

erty), 75
register_names() (DynamixelBulkWriteLoop prop-

erty), 77
register_names() (DynamixelSyncReadLoop prop-

erty), 71
register_names() (DynamixelSyncWriteLoop

property), 73
register_names() (I2CReadLoop property), 87
register_names() (I2CWriteLoop property), 88
registered_classes() (in module roboglia.utils),

97
registers() (BaseDevice property), 36
registers() (DynamixelDevice property), 70
registers() (I2CDevice property), 85
RegisterWithConversion (class in roboglia.base),

28
RegisterWithDynamicConversion (class in

roboglia.base), 30
RegisterWithMapping (class in roboglia.base), 34
RegisterWithThreshold (class in roboglia.base),

32
resume() (BaseLoop method), 40
resume() (BaseReadSync method), 44
resume() (BaseSync method), 42
resume() (BaseThread method), 39
resume() (BaseWriteSync method), 46
resume() (DynamixelBulkReadLoop method), 75
resume() (DynamixelBulkWriteLoop method), 77
resume() (DynamixelSyncReadLoop method), 71
resume() (DynamixelSyncWriteLoop method), 73
resume() (I2CReadLoop method), 87
resume() (I2CWriteLoop method), 88
resume() (JointManager method), 51
resume() (Motion method), 95
resume() (Script method), 92
resume() (StepLoop method), 90
review() (BaseLoop property), 39

review() (BaseReadSync property), 44
review() (BaseSync property), 42
review() (BaseWriteSync property), 46
review() (DynamixelBulkReadLoop property), 75
review() (DynamixelBulkWriteLoop property), 77
review() (DynamixelSyncReadLoop property), 71
review() (DynamixelSyncWriteLoop property), 73
review() (I2CReadLoop property), 87
review() (I2CWriteLoop property), 88
review() (JointManager property), 51
review() (Motion property), 95
roboglia.base

module, 15
roboglia.dynamixel

module, 62
roboglia.i2c

module, 77
roboglia.move

module, 89
roboglia.utils

module, 96
robot() (BaseBus property), 16
robot() (DynamixelBus property), 64
robot() (FileBus property), 18
robot() (I2CBus property), 79
robot() (Script property), 91
rs485() (DynamixelBus property), 63
run() (BaseLoop method), 40
run() (BaseReadSync method), 44
run() (BaseSync method), 42
run() (BaseThread method), 38
run() (BaseWriteSync method), 46
run() (DynamixelBulkReadLoop method), 75
run() (DynamixelBulkWriteLoop method), 77
run() (DynamixelSyncReadLoop method), 72
run() (DynamixelSyncWriteLoop method), 73
run() (I2CReadLoop method), 87
run() (I2CWriteLoop method), 88
run() (JointManager method), 51
run() (Motion method), 95
run() (Script method), 92
run() (StepLoop method), 90
running() (BaseLoop property), 40
running() (BaseReadSync property), 44
running() (BaseSync property), 42
running() (BaseThread property), 38
running() (BaseWriteSync property), 46
running() (DynamixelBulkReadLoop property), 75
running() (DynamixelBulkWriteLoop property), 77
running() (DynamixelSyncReadLoop property), 72
running() (DynamixelSyncWriteLoop property), 73
running() (I2CReadLoop property), 87
running() (I2CWriteLoop property), 88
running() (JointManager property), 51

Index 111

roboglia, Release 0.1.0

running() (Motion property), 96
running() (Script property), 92
running() (StepLoop property), 90

S
scan() (DynamixelBus method), 63
Scene (class in roboglia.move), 92
scenes() (Script property), 92
Script (class in roboglia.move), 91
script() (Script property), 92
Sensor (class in roboglia.base), 59
sensors() (BaseRobot property), 48
SensorXYZ (class in roboglia.base), 60
Sequence (class in roboglia.move), 93
sequences() (Scene property), 93
sequences() (Script property), 91
setup() (BaseLoop method), 40
setup() (BaseReadSync method), 44
setup() (BaseSync method), 42
setup() (BaseThread method), 38
setup() (BaseWriteSync method), 46
setup() (DynamixelBulkReadLoop method), 74
setup() (DynamixelBulkWriteLoop method), 76
setup() (DynamixelSyncReadLoop method), 71
setup() (DynamixelSyncWriteLoop method), 72
setup() (I2CReadLoop method), 86
setup() (I2CWriteLoop method), 87
setup() (JointManager method), 51
setup() (Motion method), 95
setup() (Script method), 92
setup() (StepLoop method), 89
SharedBus (class in roboglia.base), 18
SharedDynamixelBus (class in roboglia.dynamixel),

65
SharedFileBus (class in roboglia.base), 20
SharedI2CBus (class in roboglia.i2c), 79
sign_bit() (RegisterWithConversion property), 28
sign_bit() (RegisterWithDynamicConversion prop-

erty), 31
size() (BaseRegister property), 24
size() (BoolRegister property), 27
size() (RegisterWithConversion property), 29
size() (RegisterWithDynamicConversion property), 31
size() (RegisterWithMapping property), 35
size() (RegisterWithThreshold property), 33
start() (BaseLoop method), 40
start() (BaseReadSync method), 44
start() (BaseRobot method), 48
start() (BaseSync method), 42
start() (BaseThread method), 39
start() (BaseWriteSync method), 46
start() (DynamixelBulkReadLoop method), 75
start() (DynamixelBulkWriteLoop method), 77
start() (DynamixelSyncReadLoop method), 72

start() (DynamixelSyncWriteLoop method), 73
start() (I2CReadLoop method), 87
start() (I2CWriteLoop method), 89
start() (JointManager method), 50
start() (Motion method), 96
start() (Script method), 92
start() (StepLoop method), 90
started() (BaseLoop property), 40
started() (BaseReadSync property), 44
started() (BaseSync property), 42
started() (BaseThread property), 38
started() (BaseWriteSync property), 46
started() (DynamixelBulkReadLoop property), 75
started() (DynamixelBulkWriteLoop property), 77
started() (DynamixelSyncReadLoop property), 72
started() (DynamixelSyncWriteLoop property), 73
started() (I2CReadLoop property), 87
started() (I2CWriteLoop property), 89
started() (JointManager property), 51
started() (Motion property), 96
started() (Script property), 92
started() (StepLoop property), 90
StepLoop (class in roboglia.move), 89
stop() (BaseLoop method), 40
stop() (BaseReadSync method), 44
stop() (BaseRobot method), 48
stop() (BaseSync method), 42
stop() (BaseThread method), 39
stop() (BaseWriteSync method), 46
stop() (DynamixelBulkReadLoop method), 75
stop() (DynamixelBulkWriteLoop method), 77
stop() (DynamixelSyncReadLoop method), 72
stop() (DynamixelSyncWriteLoop method), 73
stop() (I2CReadLoop method), 87
stop() (I2CWriteLoop method), 89
stop() (JointManager method), 50
stop() (Motion method), 96
stop() (Script method), 92
stop() (StepLoop method), 90
stop_submit() (JointManager method), 50
stop_using() (SharedBus method), 19
stop_using() (SharedDynamixelBus method), 66
stop_using() (SharedFileBus method), 22
stop_using() (SharedI2CBus method), 81
stopped() (BaseLoop property), 40
stopped() (BaseReadSync property), 44
stopped() (BaseSync property), 42
stopped() (BaseThread property), 38
stopped() (BaseWriteSync property), 46
stopped() (DynamixelBulkReadLoop property), 75
stopped() (DynamixelBulkWriteLoop property), 77
stopped() (DynamixelSyncReadLoop property), 72
stopped() (DynamixelSyncWriteLoop property), 74
stopped() (I2CReadLoop property), 87

112 Index

roboglia, Release 0.1.0

stopped() (I2CWriteLoop property), 89
stopped() (JointManager property), 51
stopped() (Motion property), 96
stopped() (Script property), 92
stopped() (StepLoop property), 90
submit() (JointManager method), 49
sync() (BaseRegister property), 25
sync() (BoolRegister property), 27
sync() (RegisterWithConversion property), 29
sync() (RegisterWithDynamicConversion property), 31
sync() (RegisterWithMapping property), 35
sync() (RegisterWithThreshold property), 33
syncReadTx() (MockPacketHandler method), 68
syncs() (BaseRobot property), 48
syncWriteTxOnly() (MockPacketHandler method),

68

T
teardown() (BaseLoop method), 40
teardown() (BaseReadSync method), 44
teardown() (BaseSync method), 42
teardown() (BaseThread method), 38
teardown() (BaseWriteSync method), 46
teardown() (DynamixelBulkReadLoop method), 75
teardown() (DynamixelBulkWriteLoop method), 77
teardown() (DynamixelSyncReadLoop method), 72
teardown() (DynamixelSyncWriteLoop method), 74
teardown() (I2CReadLoop method), 87
teardown() (I2CWriteLoop method), 89
teardown() (JointManager method), 51
teardown() (Motion method), 96
teardown() (Script method), 92
teardown() (StepLoop method), 90
threshold() (RegisterWithThreshold property), 32
ticks() (Motion method), 95
timeout() (SharedBus property), 18
timeout() (SharedDynamixelBus property), 67
timeout() (SharedFileBus property), 22
timeout() (SharedI2CBus property), 81
times() (Scene property), 93
times() (Sequence property), 93

U
unregister_class() (in module roboglia.utils), 97

V
v() (PVL property), 52
v_func() (JointManager property), 49
value() (BaseRegister property), 25
value() (BoolRegister property), 27
value() (Joint property), 55
value() (JointPV property), 56
value() (JointPVL property), 59
value() (RegisterWithConversion property), 29

value() (RegisterWithDynamicConversion property),
31

value() (RegisterWithMapping property), 35
value() (RegisterWithThreshold property), 33
value() (Sensor property), 60
value() (SensorXYZ property), 62
value_to_external() (BaseRegister method), 25
value_to_external() (BoolRegister method), 26
value_to_external() (RegisterWithConversion

method), 28
value_to_external() (RegisterWithDynamic-

Conversion method), 30
value_to_external() (RegisterWithMapping

method), 35
value_to_external() (RegisterWithThreshold

method), 32
value_to_internal() (BaseRegister method), 25
value_to_internal() (BoolRegister method), 26
value_to_internal() (RegisterWithConversion

method), 28
value_to_internal() (RegisterWithDynamic-

Conversion method), 30
value_to_internal() (RegisterWithMapping

method), 35
value_to_internal() (RegisterWithThreshold

method), 32
velocities() (Frame property), 94
velocities() (PVLList property), 53
velocity() (JointPV property), 56
velocity() (JointPVL property), 58
velocity_read_register() (JointPV property),

56
velocity_read_register() (JointPVL property),

58
velocity_write_register() (JointPV property),

56
velocity_write_register() (JointPVL prop-

erty), 58

W
warning() (BaseLoop property), 40
warning() (BaseReadSync property), 44
warning() (BaseSync property), 42
warning() (BaseWriteSync property), 46
warning() (DynamixelBulkReadLoop property), 75
warning() (DynamixelBulkWriteLoop property), 77
warning() (DynamixelSyncReadLoop property), 72
warning() (DynamixelSyncWriteLoop property), 74
warning() (I2CReadLoop property), 87
warning() (I2CWriteLoop property), 89
warning() (JointManager property), 51
warning() (Motion property), 96
word() (BaseRegister property), 25
word() (BoolRegister property), 27

Index 113

roboglia, Release 0.1.0

word() (RegisterWithConversion property), 29
word() (RegisterWithDynamicConversion property), 31
word() (RegisterWithMapping property), 35
word() (RegisterWithThreshold property), 33
write() (BaseBus method), 16
write() (BaseRegister method), 25
write() (BoolRegister method), 27
write() (DynamixelBus method), 64
write() (FileBus method), 17
write() (I2CBus method), 79
write() (RegisterWithConversion method), 29
write() (RegisterWithDynamicConversion method), 31
write() (RegisterWithMapping method), 35
write() (RegisterWithThreshold method), 34
write() (SharedBus method), 20
write() (SharedDynamixelBus method), 67
write() (SharedFileBus method), 22
write() (SharedI2CBus method), 81
write1ByteTxRx() (MockPacketHandler method),

68
write2ByteTxRx() (MockPacketHandler method),

68
write4ByteTxRx() (MockPacketHandler method),

68
write_block() (I2CBus method), 79
write_block_data() (MockSMBus method), 83
write_byte() (MockSMBus method), 84
write_byte_data() (MockSMBus method), 82
write_i2c_block_data() (MockSMBus method),

84
write_quick() (MockSMBus method), 84
write_register() (BaseDevice method), 37
write_register() (DynamixelDevice method), 70
write_register() (I2CDevice method), 85
write_word_data() (MockSMBus method), 82

X
x() (SensorXYZ property), 62
x_inverse() (SensorXYZ property), 61
x_offset() (SensorXYZ property), 61
x_register() (SensorXYZ property), 61

Y
y() (SensorXYZ property), 62
y_inverse() (SensorXYZ property), 61
y_offset() (SensorXYZ property), 61
y_register() (SensorXYZ property), 61

Z
z() (SensorXYZ property), 62
z_inverse() (SensorXYZ property), 61
z_offset() (SensorXYZ property), 61
z_register() (SensorXYZ property), 61

114 Index

	Installation
	Requirements
	Installation procedure
	References

	roboglia Quick Start
	Robot Definition File
	Moving the Robot

	API Reference
	base Module
	dynamixel Module
	i2c Module
	move Module
	utils Module

	Indices and tables
	Python Module Index
	Index

